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FIELD OF THE INVENTION

The present invention relates to the integration and/or snug
coupling of reconfigurable processors with standard proces-
sors, data exchange and synchronization of data processing as
well as compilers for them.

The present invention relates to methods of operating and
optimum use of reconfigurable arrays of data processing ele-
ments.

The present invention relates to improvements in the use of
reconfigurable processor technologies for data processing.

BACKGROUND INFORMATION

A reconfigurable architecture in the present context is
understood to refer to modules or units (VPUs) having a
configurable function and/or interconnection, in particular
integrated modules having a plurality of arithmetic and/or
logic and/or analog and/or memory and/or internal/external
interconnecting modules in one or more dimensions intercon-
nected directly or via a bus system.

Conventional types of such modules includes, for example,
systolic arrays, neural networks, multiprocessor systems,
processors having a plurality of arithmetic units and/or logic
cells and/or communicative/peripheral cells (10), intercon-
nection and network modules such as crossbar switches, and
conventional modules of FPGA, DPGA, Chameleon,
XPUTER, etc. Reference is made in this connection to the
following patents and patent applications: P 44 16 881 A1, DE
19781412A1,DE 19781483 A1,DE 196 54846 A1, DE 196
54593 A1,DE 197 04 044.6 A1, DE 198 80 129 A1, DE 198
61088 A1,DE 19980312 A1, PCT/DE 00/01869, DE 10036
627A1,DE 10028397A1,DE10110530A1,DE 101 11 014
Al1,PCT/EP00/10516,EP01 102 674 A1,DE 198 80 128 A1,
DE 101 39170 A1, DE 198 09 640 A1, DE 199 26 538.0 A1,
DE 100 50 442 A1, PCT/EP 02/02398, DE 102 40 000, DE
102 02 044, DE 102 02 175, DE 101 29 237, DE 101 42 904,
DE 10135210,EP 01 129 923, PCT/EP 02/10084, DE 102 12
622,DE 10236 271, DE 102 12 621, EP 02 009 868, DE 102
36272, DE 102 41 812, DE 102 36 269, DE 102 43 322, EP
02 022 692, DE 103 00 380, DE 103 10 195 and EP 02 001
331 and EP 02 027 277. The full content of these documents
is herewith incorporated for disclosure purposes.

The architecture mentioned above is used as an example
for clarification and is referred to below as a VPU. This
architecture is composed of any, typically coarsely granular
arithmetic, logic cells (including memories) and/or memory
cells and/or interconnection cells and/or communicative/pe-
ripheral (IO) cells (PAEs) which may be arranged in a one-
dimensional or multi-dimensional matrix (PA). The matrix
may have different cells of any design; the bus systems are
also understood to be cells here. A configuration unit (CT)
which stipulates the interconnection and function of the PA
through configuration is assigned to the matrix as a whole or
parts thereof. A finely granular control logic may be provided.
Various methods are known for coupling reconfigurable pro-
cessors with standard processors. They usually involve a
loose coupling. In many regards, the type and manner of
coupling still need further improvement; the same is true for
compiler methods and/or operating methods provided for
joint execution of programs on combinations of reconfig-
urable processors and standard processors.

The limitations of conventional processors are becoming
more and more evident. The growing importance of stream-
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based applications makes coarse-grain dynamically reconfig-
urable architectures an attractive alternative. See, e.g., R.
Hartenstein, R. Kress, & H. Reinig, “A new FPGA architec-
ture for word-oriented datapaths,” Proc. FPL '94, Springer
LNCS, September 1994, at 849; E. Waingold et al., “Baring it
all to software: Raw machines,” IEEE Computer, September
1997, at 86-93; PACT Corporation, “The XPP Communica-
tion System,” Technical Report 15 (2000); see generally
http://www.pactcorp.com. They combine the performance of
ASICs, which are very risky and expensive (development and
mask costs), with the flexibility of traditional processors. See,
for example, J. Becker, “Configurable Systems-on-Chip
(CSoC),” (Invited Tutorial), Proc. of 9 Proc. of XV Brazilian
Symposium on Integrated Circuit, Design (SBCCI 2002),
(September 2002).

The datapaths of modern microprocessors reach their lim-
its by using static instruction sets. In spite of the possibilities
that exist today in VLSI development, the basic concepts of
microprocessor architectures are the same as 20 years ago.
The main processing unit of modern conventional micropro-
cessors, the datapath, in its actual structure follows the same
style guidelines as its predecessors. Although the develop-
ment of pipelined architectures or superscalar concepts in
combination with data and instruction caches increases the
performance of a modern microprocessor and allows higher
frequency rates, the main concept of a static datapath remains.
Therefore, each operation is a composition of basic instruc-
tions that the used processor owns. The benefit of the proces-
sor concept lies in the ability of executing strong control
dominant application. Data or stream oriented applications
are not well suited for this environment. The sequential
instruction execution isn’t the right target for that kind of
application and needs high bandwidth because of permanent
retransmitting of instruction/data from and to memory. This
handicap is often eased by use of caches in various stages. A
sequential interconnection of filters, which perform data
manipulation without writing back the intermediate results
would get the right optimisation and reduction of bandwidth.
Practically, this kind of chain of filters should be constructed
in a logical way and configured during runtime. Existing
approaches to extend instruction sets use static modules, not
modifiable during runtime.

Customized microprocessors or ASICs are optimized for
one special application environment. It is nearly impossible
to use the same microprocessor core for another application
without loosing the performance gain of this architecture.

A new approach of a flexible and high performance data-
path concept is needed, which allows for reconfiguring the
functionality and for making this core mainly application
independent without losing the performance needed for
stream-based applications.

When using a reconfigurable array, it is desirable to opti-
mize the way in which the array is coupled to other units, e.g.,
to a processor if the array is used as a coprocessor. It is also
desirable to optimize the way in which the array is configured.

Further, WO 00/49496 discusses a method for execution of
a computer program using a processor that includes a config-
ural functional unit capable of executing reconfigurable
instructions, which can be redefined at runtime. A problem
with conventionable processor architectures exists if a cou-
pling of, for example, sequentional processors is needed and/
or technologies such as a data-streaming, hyper-threading,
multi-threading, multi-tasking, execution of parts of configu-
rations, etc., are to be a useful way for enhancing perfor-
mance. Techniques discussed in prior art, such as WO
02/50665 A1, do not allow for a sufficiently efficient way of
providing for a data exchange between the ALU of a CPU and
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the configurable data processing logic cell field, such as an
FPGA, DSP, or other such arrangement. In the prior art, the
data exchange is effected via registers. In other words, it is
necessary to first write data into a register sequentially, then
retrieve them sequentially, and restore them sequentially as
well.

Another problem exists if an external access to data is
requested in known devices used, inter alia, to implement
functions in the configurable data processing logic cell field,
DFP, FPGA, etc., that cannot be processed sufficiently on a
CPU-integrated AL U. Accordingly, the data processing logic
cell field is practically used to allow for user-defined opcodes
that can process data more efficiently than is possible on the
ALU of the CPU without further support by the data process-
ing logic cell field. In the prior art, the coupling is generally
word-based, not block-based. A more efficient data process-
ing, in particular more efficient than possible with a close
coupling via registers, is highly desirable.

Another method for the use of logic cell fields that include
coarse- and/or fine-granular logic cells and logic cell ele-
ments provides for a very loose coupling of such a field to a
conventional CPU and/or a CPU-core in embedded systems.
In this regard, a conventional sequential program can be
executed on the CPU, for example a program written in C,
C++, etc., wherein the instantiation or the data stream pro-
cessing by the fine- and/or coarse-granular data processing
logic cell field is effected via that sequential program. How-
ever, a problem exists in that for programming said logic cell
field, a program not written in C or another sequential high-
level language must be provided for the data stream process-
ing. It is desirable to allow for C-programs to run both on a
conventional CPU-architecture as well as on the data process-
ing logic cell field operated therewith, in particular, despite
the fact that a quasi-sequential program execution should
maintain the capability of data-streaming in the data process-
ing logic cell fields, whereas simultaneously the capability
exists to operate the CPU in a not too loosely coupled way.

It is already known to provide for sequential data process-
ing within a data processing logic cell field. See, for example,
DE 196 51 075, WO 98/26356, DE 196 54 846, WO
98/29952, DE 197 04 728, WO 98/35299, DE 199 26 538,
WO 00/77652, and DE 102 12 621. Partial execution is
achieved within a single configuration, for example, to reduce
the amount of resources needed, to optimize the time of
execution, etc. However, this does not lead automatically to
allowing a programmer to translate or transfer high-level
language code automatically onto a data processing logic cell
field as is the case in common machine models for sequential
processes. The compilation, transfer, or translation of a high-
level language code onto data processing logic cell fields
according to the methods known for models of sequentially
executing machines is difficult.

In the prior art, it is further known that configurations that
effect different functions on parts of the area respectively can
be simultaneously executed on the processing array and that
a change of one or some of the configuration(s) without
disturbing other configurations is possible at run-time. Meth-
ods and hardware-implemented means for the implementa-
tion are known to ensure that the execution of partial configu-
rations to be loaded onto the array is possible without
deadlock. Reference is made to DE 196 54 593, WO
98/31102,DE 198 07 872, WO 99/44147,DE 19926538, WO
00/77652, DE 100 28 397, and WO 02/13000. This technol-
ogy allows in a certain way a certain parallelism and, given
certain forms and interrelations of the configurations or par-
tial configurations for a certain way of multitasking/multi-
threading, in particular in such a way that the planning, i.e.,
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the scheduling and/or the planning control for time use, can
be provided for. Furthermore, from the prior art, time use
planning control means and methods are known that, at least
under a corresponding interrelation of configurations and/or
assignment of configurations to certain tasks and/or threads to
configurations and/or sequences of configurations, allow fora
multi-tasking and/or multi-threading.

With respect to a design of logic cell fields, reference is
made here to the XPP architecture and previously published
patent applications as well as more recent patent applications
by the present applicant, these documents being fully incor-
porated herewith for disclosure purposes. The following
documents should thus be mentioned in particular: DE 44 16
881 Al, DE 197 81 412A1, DE 197 81 483A1, DE 196 54
846A1, DE 196 54 593A1, DE 197 04 044.6A1, DE 198 80
129 A1, DE 198 61 088 Al, DE 199 80 312 Al, PCT/DE
00/01869, now U.S. Pat. No. 8,230,411, DE 100 36 627 Al,
DE 100 28 397 Al, DE 10110530A1, DE 10111 014A1,
PCT/EP00/10516 (can’t find it in WIPO), EP 01102 674A1,
DE 198 80 128A1, DE 10139170A1, DE 198 09 640A1, DE
19926 538.0A1, DE 100 50 442A1, PCT/EP 02/02398, now
U.S. Pat. No. 7,581,076, DE 102 40 000, DE 102 02 044, DE
10202 175, DE 101 29 237, DE 101 42 904, DE 101 35 210,
EP 01 129 923, PCT/EP 02/10084, now U.S. Pat. No. 7,577,
822,DE 102 12 622, DE 102 36 271, DE 102 12 621, EP 02
009868, DE 10236 272, DE 102 41 812, DE 102 36 269, DE
102 43 322, EP 02 022 692, EP 02 001 331, and EP 02 027
277.

One problem in traditional approaches to reconfigurable
technologies is encountered when the data processing is per-
formed primarily on a sequential CPU using a configurable
data processing logic cell field or the like and/or when data
processing involving a plurality of processing steps and/or
extensive processing steps to be performed sequentially is
desired.

There are known approaches which are concerned with
how data processing may be performed on both a CPU and a
configurable data processing logic cell field.

WO 00/49496 describes a method for executing a com-
puter program using a processor which includes a config-
urable functional unit capable of executing reconfigurable
instructions, whose effect is redefinable in runtime by loading
a configuration program, this method including the steps of
selecting combinations of reconfigurable instructions, gener-
ating a particular configuration program for each combina-
tion, and executing the computer program. Each time an
instruction from one of the combinations is needed during
execution and the configurable functional unit is not config-
ured using the configuration program for this combination,
the configuration program for all the instructions of the com-
bination is to be loaded into the configurable functional unit.
In addition, a data processing device having a configurable
functional unit is known from WO 02/50665 A1, where the
configurable functional unit is used to execute instructions
according to a configurable function. The configurable func-
tional unit has a plurality of independent configurable logic
blocks for executing programmable logic operations to
implement the configurable function. Configurable connect-
ing circuits are provided between the configurable logic
blocks and both the inputs and outputs of the configurable
functional unit. This allows optimization of the distribution of
logic functions over the configurable logic blocks.

One problem with traditional architectures occurs when
coupling is to be performed and/or technologies such as data
streaming, hyperthreading, multithreading and so forth are to
be utilized in a logical and performance-enhancing manner. A
description of an architecture is given in “Exploiting Choice:
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Instruction Fetch and Issue on Implementable Simultaneous
Multi-Threading Processor,” Dean N. Tulson, Susan J. Egg-
ers et al., Proceedings of the 23’7 Annual International Sym-
posium on Computer Architecture, Philadelphia, May 1996.

Hyperthreading and multithreading technologies have
been developed in view of the fact that modern microproces-
sors gain their efficiency from many specialized functional
units and functional units triggered like a deep pipeline as
well as high memory hierarchies; this allows high frequencies
in the function cores. However, due to the strictly hierarchical
memory arrangements, there are major disadvantages in the
event of faulty access to caches because of the difference
between core frequencies and memory frequencies, since
many core cycles may elapse before data is read out of the
memory. Furthermore, problems occur with branchings and
in particular incorrectly predicted branchings. It has therefore
been proposed that a switch be performed between different
tasks as a simultaneous multithreading (SMT) procedure
whenever an instruction is not executable or does not use all
functional units.

The technology of the above-cited exemplary documents
(not by the present applicant) involves, among other things,
an arrangement in which configurations are loadable into a
configurable data processing logic cell field, but in which data
exchange between the ALU of the CPU and the configurable
data processing logic cell field, whether an FPGA, DSP or the
like, takes place via registers. In other words, data from a data
stream must first be written sequentially into registers and
then stored in these registers sequentially again. Another
problem occurs when there is to be external access to data,
because even then there are still problems in the chronologi-
cal data processing sequence in comparison with the ALU
and in the allocation of configurations, and so forth. Tradi-
tional arrangements, such as those known from protective
rights notheld by the present applicant, are used, among other
things, for processing functions in the configurable data pro-
cessing logic cell field, DFP, FPGA or the like, which are not
efficiently processable on the ALU of the CPU. The config-
urable data processing logic cell field is thus used in practical
terms to permit user-defined opcodes which allow more effi-
cient processing of algorithms than would be possible on the
ALU arithmetic unit of the CPU without configurable data
processing logic cell field support.

In the related art, as has been recognized, coupling is thus
usually word-based but not block-based, as would be neces-
sary for data streaming processing. It is initially desirable to
permit more efficient data processing than would be the case
with close coupling via registers.

Another possibility for using logic cell fields of logic cells
having a coarse and/or fine granular structure and logic cells
and logic cell elements having a coarse and/or fine granular
structure involves a very loose coupling of such a field to a
traditional CPU and/or a CPU core with embedded systems.
A traditional sequential program, e.g., a program written in C,
C++ or the like, may run on a CPU or the like, data stream
processing calls being instantiated by this program on the
finely and/or coarsely granular data processing logic cell
field. It is then problematic that in programming for this logic
cell field, a program not written in C or another sequential
high-level language must be provided for data stream pro-
cessing. [t would be desirable here for C programs or the like
to be processable on both the traditional CPU architecture and
on a data processing logic cell field operated jointly together
with it, i.e., a data streaming capability is nevertheless main-
tained in quasi-sequential program processing using the data
processing logic cell field in particular, whereas CPU opera-
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tion, in particular using a coupling which is not too loose,
remains possible at the same time.

It is also already known that within a data processing logic
cell field system such as that known in particular from
PACTO2 (DE 196 51 075.9-53, WO 98/26356, now U.S. Pat.
No. 6,728,871), PACT04 (DE 196 54 846.2-53, WO
98/29952(no US)), PACTO08 (DE 197 04 728.9, WO 98/35299
(no US)), PACT13 (DE 199 26 538.0, WO 00/77652, now
U.S. Pat. No. 8,230,411), PACT31 (DE 102 12 621.6-53,
PCT/EP 02/10572, now U.S. Pat. No. 8,429,385), sequential
data processing may also be provided within the data process-
ing logic cell field. However, for example to save resources, to
achieve time optimization and so forth, partial processing is
achieved within a single configuration without this resulting
in a programmer being able to automatically and easily
implement a piece of high-level language code on a data
processing logic cell field, as is the case with traditional
machine models for sequential processors. Implementation
of high-level language code on data processing logic cell
fields according to the models for sequentially operating
machines still remains difficult.

It is also known from the related art that multiple configu-
rations, each triggering a different mode of functioning of
array parts, may be processed simultaneously on the proces-
sor array (PA) and that a switch in one or more configurations
may take place without any disturbance in others during
runtime. Methods and arrangements for their implementation
in hardware are known; processing of partial configurations
to be loaded into the field may be performed without a dead-
lock. Reference is made here in particular to the patent appli-
cations pertaining to the FILMO technology, e.g., PACTO05
(DE 196 54 593.5-53, WO 98/31102 (no US)), PACT10 (DE
198 07 872.2, WO 99/44147, now U.S. Pat. No. 6,480,937,
WO 99/44120, now U.S. Pat. No. 6,571,381), PACT13 (DE
199 26 538.0, WO 00/77652, now U.S. Pat. No. 8,230,411),
PACT17 (DE 100 28 397.7), WO 02/13000, now U.S. Pat.
No. 7,003,660); PACT31 (DE 102 12 621.6, WO 03/036507,
now U.S. Pat. No. 8,429,385). This technology already per-
mits parallelization to a certain extent and, with appropriate
design and allocation of the configurations, also permits a
type of multitasking/multithreading of such a type that plan-
ning, i.e., scheduling and/or time use planning control, is
provided. Time use planning control arrangements and meth-
ods are thus known per se from the related art, allowing
multitasking and/or multithreading at least with appropriate
allocation of configurations to individual tasks and/or threads
to configurations and/or configuration sequences.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a novel
approach for commercial use.

A standard processor, e.g., an RISC, CISC, DSP (CPU),
may be connected to a reconfigurable processor (VPU).
Described are two different embodiments of couplings. In
one embodiment, the two described embodiments may be
simultaneously implemented.

In one embodiment of the present invention, a direct cou-
pling to the instruction set of a CPU (instruction set coupling)
may be provided.

In a second embodiment of the present invention, a cou-
pling via tables in the main memory may be provided.

These two embodiments may be simultaneously and/or
alternatively implementable.

Embodiments of the present invention may improve upon
the prior art with respect to optimization of the way in which
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areconfigurable array is coupled to other units and/or the way
in which the array is configured.

A way out of limitations of conventional microprocessors
may be a dynamic reconfigurable processor datapath exten-
sion achieved by integrating traditional static datapaths with
the coarse-grain dynamic reconfigurable XPP-architecture
(eXtreme Processing Platform). Embodiments of the present
invention introduce a new concept of loosely coupled imple-
mentation of the dynamic reconfigurable XPP architecture
from PACT Corp. into a static datapath of the SPARC com-
patible LEON processor. Thus, this approach is different from
those where the XPP operates as a completely separate (mas-
ter) component within one Configurable System-on-Chip
(CsoC), together with a processor core, global/local memory
topologies, and efficient multi-layer Amba-bus interfaces.
See, for example, J. Becker & M. Vorbach, “Architecture,
Memory and Interface Technology Integration of an Indus-
trial/Academic Configurable System-on-Chip (CSoC),”
IEEE Computer Society Annual Workshop on VLSI (WVLSI
2003), (February 2003). From the programmer’s point of
view, the extended and adapted datapath may seem like a
dynamic configurable instruction set. It can be customized for
a specific application and can accelerate the execution enor-
mously. Therefore, the programmer has to create a number of
configurations that can be uploaded to the XPP-Array at run
time. For example, this configuration can be used like a filter
to calculate stream-oriented data. It is also possible to con-
figure more than one function at the same time and use them
simultaneously. These embodiments may provide an enor-
mous performance boost and the needed flexibility and power
reduction to perform a series of applications very effective.

Embodiments of the present invention may provide a hard-
ware framework, which may enable an efficient integration of
a PACT XPP core into a standard RISC processor architec-
ture.

Embodiments of the present invention may provide a com-
piler for a coupled RISC+XPP hardware. The compiler may
decide automatically which part of a source code is executed
on the RISC processor and which part is executed on the
PACT XPP core.

In an example embodiment of the present invention, a C
Compiler may be used in cooperation with the hardware
framework for the integration of the PACT XPP core and
RISC processor.

In an example embodiment of the present invention, the
proposed hardware framework may accelerate the XPP core
in two respects. First, data throughput may be increased by
raising the XPP’s internal operating frequency into the range
of'the RISC’s frequency. This, however, may cause the XPP
to run into the same pit as all high frequency processors, i.e.,
memory accesses may become very slow compared to pro-
cessor internal computations. Accordingly, a cache may be
provided for use. The cache may ease the memory access
problem for a large range of algorithms, which are well suited
for an execution on the XPP. The cache, as a second through-
put increasing feature, may require a controller. A program-
mable cache controller may be provided for managing the
cache contents and feeding the XPP core. It may decouple the
XPP core computations from the data transfer so that, for
instance, data preload to a specific cache sector may take
place while the XPP is operating on data located in a different
cache sector.

A problem which may emerge with a coupled RISC+XPP
hardware concerns the RISC’s multitasking concept. It may
become necessary to interrupt computations on the XPP in
order to perform a task switch. Embodiments of the present
invention may provided for hardware and a compiler that
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supports multitasking. First, each XPP configuration may be
considered as an uninterruptible entity. This means that the
compiler, which generates the configurations, may take care
that the execution time of any configuration does not exceed
a predefined time slice. Second, the cache controller may be
concerned with the saving and restoring of the XPP’s state
after an interrupt. The proposed cache concept may minimize
the memory traffic for interrupt handling and frequently may
even allow avoiding memory accesses at all.

In an example embodiment of the present invention, the
cache concept may be based on a simple internal RAM
(IRAM) cell structure allowing for an easy scalability of the
hardware. For instance, extending the XPP cache size, for
instance, may require not much more than the duplication of
IRAM cells.

In an embodiment of the present invention, a compiler for
a RISC+XPP system may provide for compilation for the
RISC+XPP system of real world applications written in the C
language. The compiler may remove the necessity of devel-
oping NML (Native Mapping Language) code for the XPP by
hand. It may be possible, instead, to implement algorithms in
the C language or to directly use existing C applications
without much adaptation to the XPP system. The compiler
may include the following three major components to per-
form the compilation process for the XPP:

1. partitioning of the C source code into RISC and XPP

parts;

2. transformations to optimize the code for the XPP; and

3. generating of NML code.

The generated NML code may be placed and routed for the
XPP.

The partitioning component of the compiler may decide
which parts of an application code can be executed on the
XPP and which parts are executed on the RISC. Typical
candidates for becoming XPP code may be loops with a large
number of iterations whose loop bodies are dominated by
arithmetic operations. The remaining source code—includ-
ing the data transfer code—may be compiled for the RISC.

The compiler may transform the XPP code such that it is
optimized for NML code generation. The transformations
included in the compiler may include a large number of loop
transformations as well as general code transformations.
Together with data and code analysis the compiler may
restructure the code so that it fits into the XPP array and so that
the final performance may exceed the pure RISC perfor-
mance. The compiler may generate NML code from the trans-
formed program. The whole compilation process may be
controlled by an optimization driver which selects the optimal
order of transformations based on the source code.

Discussed below with respect to embodiments of the
present invention are case studies, the basis of the selection of
which is the guiding principle that each example may stand
for a set of typical real-world applications. For each example
is demonstrated the work of the compiler according to an
embodiment of the present invention. For example, first par-
titioning of the code is discussed. The code transformations,
which may be done by the compiler, are shown and explained.
Some examples require minor source code transformations
which may be performed by hand. These transformations
may be either too expensive, or too specific to make sense to
be included in the proposed compiler. Dataflow graphs of the
transformed codes are constructed for each example, which
may be used by the compiler to generate the NML code. In
addition, the XPP resource usages are shown. The case stud-
ies demonstrate that a compiler containing the proposed
transformations can generate efficient code from numerical
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applications for the XPP. This is possible because the com-
piler may rely on the features of the suggested hardware, like
the cache controller.

Other embodiments of the present invention pertain to a
realization that for data-streaming data-processing, block-
based coupling is highly preferable. This is in contrast to a
word-based coupling discussed above with respect to the
prior art.

Further, embodiments of the present invention provide for
the use of time use planning control means, discussed above
with respect to their use in the prior art, for configuring and
management of configurations for the purpose of scheduling
of'tasks, threads, and multi- and hyper-threads.

Embodiments of the present invention provide a novel
device and method for commercial application.

In an example embodiment of the present invention, a
device may be provided that includes a data processing logic
cell field and one or more sequential CPUs. The logic cell
field and the CPUs may be configured to be coupled to each
other for data exchange. The data exchange may be, e.g., in
block form using lines leading to a cache memory.

In an example embodiment of the present invention, a
method for operating a reconfigurable unit having runtime-
limited configurations may be provided. The configurations
may be able to increase their maximum allowed runtime, e.g.,
by triggering a parallel counter. An increase in configuration
runtime by the configurations may be suppressed in response
to an interrupt.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram that illustrates components of an
example system according to which a method of an example
embodiment of the present invention may be implemented.

FIG. 2 is a diagram that illustrates an example interlinked
list that may point to a plurality of tables in an order in which
they were created or called, according to an example embodi-
ment of the present invention.

FIG. 3 is a diagram that illustrates an example internal
structure of a microprocessor or microcontroller, according to
an example embodiment of the present invention.

FIG. 4 is a diagram that illustrates an example load/store
unit, according to an example embodiment of the present
invention.

FIG. 5 is a diagram that illustrates example couplings of a
VPU to an external memory and/or main memory via a cache,
according to an example embodiment of the present inven-
tion.

FIG. 5A is a diagram that illustrates example couplings of
RAM-PAEs to a cache via a multiplexer, according to an
example embodiment of the present invention.

FIG. 5B is a diagram that illustrates a system in which there
is an implementation of one bus connection to cache, accord-
ing to an example embodiment of the present invention.

FIG. 6 is a diagram that illustrates a coupling of an FPGA
structure to a data path considering an example of a VPU
architecture, according to an example embodiment of the
present invention.

FIGS. 7A-7C illustrate example groups of PAEs of one or
more VPUs for application of example methods, according to
example embodiments of the present invention.

FIG. 8 illustrates components of a LEON architecture.

FIG. 9 shows the pipelined datapath structure of the LEON
integer unit.

FIG. 10 illustrates components of a typical PAE.
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FIG. 11 is a diagram that illustrates an extended datapath
according to an example embodiment of the present inven-
tion.

FIG. 12 illustrates transmission of data to an extended
XPP-based datapath by passing the data through an 10-Port,
according to an example embodiment of the present inven-
tion.

FIG. 13 illustrates an extended LEON instruction pipeline,
according to an example embodiment of the present inven-
tion.

FIG. 14 is a graph that shows that the benefit brought by
XPP rises with the number of iDCT blocks computed by it
before reconfiguration.

FIG. 15 is a block diagram of an MPEG-4 decoding algo-
rithm, according to an example embodiment of the present
invention.

FIG. 16 is a block diagram illustrating components of an
example embodiment of the present invention, where an XPP
core and a RISC core share a memory hierarchy.

FIG. 17 shows an IRAM and configuration cache control-
ler data structures and a usage example, according to an
example embodiment of the present invention.

FIG. 18 shows an asynchronous pipeline of an XPP,
according to an example embodiment of the present inven-
tion.

FIG. 19 is a diagram that illustrates tasks of an XPP cache
controller as states, according to an example embodiment of
the present invention.

FIG. 20 shows simultaneous multithreading according to
an example embodiment of the present invention.

FIG. 21 shows an example of a cache structure according to
an example embodiment of the present invention.

FIG. 22 is a control-flow graph of a piece of a program,
according to an example embodiment of the present inven-
tion.

FIG. 23 illustrates a code and diagram of an example of a
true dependence with distance 0 on array ‘a’, according to an
example embodiment of the present invention.

FIG. 24 illustrates a code and diagram of an example of an
anti-dependence with distance O on array ‘b’, according to an
example embodiment of the present invention.

FIG. 25 illustrates a code and diagram of an example of an
output dependence with distance O on array ‘a’, according to
an example embodiment of the present invention.

FIG. 26 illustrates a code and diagram of an example of a
dependence with direction vector (=,=) between S1 and S2
and a dependence with direction vector (==,<) between S2
and S2, according to an example embodiment of the present
invention.

FIG. 27 illustrates a code and diagram of an example of an
anti-dependence with distance vector (0,2), according to an
example embodiment of the present invention.

FIG. 28 is a graph illustrating information of a flow-sensi-
tive alias analysis versus a flow insensitive alias analysis,
according to an example embodiment of the present inven-
tion.

FIG. 29 is a diagram that illustrates aligned and misaligned
memory accesses.

FIG. 30 illustrates merging of arrays, according to an
example embodiment of the present invention.

FIG. 31 is a flowchart that illustrates a global view of a
compiling procedure, according to an example embodiment
of the present invention.

FIG. 32 is a flowchart that illustrates a detailed architecture
and an internal processing of an XPP Compiler.
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FIG. 33 is a diagram that illustrates details of XPP loop
optimizations, including their organization, according to an
example embodiment of the present invention.

FIG. 34 is an expression tree of an edge 3x3 inner loop
body, according to an example embodiment of the present
invention.

FIG. 35 is an expression tree showing the interchanging of
operands of commutative add expressions to reduce an over-
all tree depth, according to an example embodiment of the
present invention.

FIG. 36 shows a main calculation network of an edge 3x3
configuration, according to an example embodiment of the
present invention.

FIG. 37 shows a case of synthesized shift registers, accord-
ing to an example embodiment of the present invention.

FIG. 38 is a data dependency graph relating to a FIR filter,
according to an example embodiment of the present inven-
tion.

FIG. 39 is a dataflow graph that is achieved in an instance
where values of x needed for computation of y are kept in
registers, according to an example embodiment of the present
invention.

FIG. 40 is a dataflow graph representing an inner loop with
loop unrolling, according to an example embodiment of the
present invention.

FIG. 41 is a data dependency graph for matrix multiplica-
tion, according to an example embodiment of the present
invention.

FIG. 42 is avisualization of array access sequences prior to
optimization according to an example embodiment of the
present invention.

FIG. 43 is a visualization of array access sequences subse-
quent to optimization according to an example embodiment
of the present invention.

FIG. 44 A shows the top-left section of a dataflow graph of
a synthesized configuration for showing matrix multiplica-
tion after unroll and jam, according to an example embodi-
ment of the present invention.

FIG. 44B shows the top-right section of a dataflow graph of
a synthesized configuration for showing matrix multiplica-
tion after unroll and jam, according to an example embodi-
ment of the present invention.

FIG. 44C shows the middle-left section of a dataflow graph
of a synthesized configuration for showing matrix multipli-
cation after unroll and jam, according to an example embodi-
ment of the present invention.

FIG. 44D shows the middle-right section of a dataflow
graph of a synthesized configuration for showing matrix mul-
tiplication after unroll and jam, according to an example
embodiment of the present invention.

FIG. 44E shows the bottom-left section of a dataflow graph
of a synthesized configuration for showing matrix multipli-
cation after unroll and jam, according to an example embodi-
ment of the present invention.

FIG. 44F shows the bottom-right section of a dataflow
graph of a synthesized configuration for showing matrix mul-
tiplication after unroll and jam, according to an example
embodiment of the present invention

FIG. 45 is a data flow graph corresponding to a butterfly
loop, according to an example embodiment of the present
invention.

FIG. 46 is a data flow graph showing modifications to code
corresponding to the graph of FIG. 45, according to an
example embodiment of the present invention.

FIG. 47 illustrates a splitting network, according to an
example embodiment of the present invention.
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FIG. 48 is a diagram that illustrates how short values are
handled, according to an example embodiment of the present
invention.

FIG. 49 is a diagram that illustrates how a merge is done,
according to an example embodiment of the present inven-
tion.

FIG. 50 illustrates a changing of values of a block row by
row before processing of columns.

FIG. 51 illustrates a possible implementation for saturate
(val,n) as an NML schematic using two ALUs, according to
an example embodiment of the present invention.

FIG. 52 is a data flow graph for IDCTCOLUMN_CON-
FIG.

FIG. 53 is a diagram that illustrates use of two counter
macros for address generation, according to an example
embodiment of the present invention.

FIG. 54 is a diagram that illustrates an idling of units of a
deep pipeline.

FIG. 55 illustrates a loop interchange, according to an
example embodiment of the present invention.

FIG. 56 illustrates use of output IRAM of Config A as input
IRAM of Config B to bypass a memory interface for band-
width optimization, according to an example embodiment of
the present invention.

FIG. 57 illustrates block offsets inside tiles generated by a
SUIP counter, according to an example embodiment of the
present invention.

FIG. 58 illustrates a difference in efficiency between an
instance where there is no data duplication and instance
where there is data duplication according to an example
embodiment of the present invention.

FIG. 59 illustrates IDCTROW_CONFIG, IDCTCOL-
UMN_CONFIG, and REORDER_CONFIG of an example
embodiment of the present invention.

FIG. 60 is a dataflow graph of loop bodies of wavelet after
performance of a step of tree balancing, according to an
example embodiment of the present invention.

FIG. 61 is a graphical representation of functions for pro-
cessing data and event packets that can be configured into an
RDFP.

FIGS. 62-76 each illustrates a CDFG according to a respec-
tive embodiment of the present invention.

FIGS. 77A-77] include diagrams illustrating passing of
data between a data processing logic cell field and memory,
according to exemplary embodiments of the present inven-
tion.

FIG. 78 is a diagram that illustrates a structure that pro-
vides for shutting down a cache in slices via power discon-
nections, according to an example embodiment of the present
invention.

FIGS. 79A-79D include diagrams that illustrate different
arrangements of FPGAs and ALLUs and/or EALUs of a logic
cellfield, according to exemplary embodiments of the present
invention.

FIGS. 80A to 80C include diagrams that illustrate archi-
tectures in which an SMT processor is coupled to an XPP
thread resource, according to exemplary embodiments of the
present invention.

FIG. 81 is a diagram that illustrates an embodiment of the
present invention in which a pseudo-random noise may be
generated using a single cell if individual output bits obtained
stepwise always from a single FPGA cell are written back to
the FPGA cell.

FIGS. 82A to 82B include diagrams and a table that illus-
trate a task switch, a thread switch, and/or a hyperthread
switch, according to exemplary embodiments of the present
invention.
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FIG. 83 is a flowchart illustrating a method for a configu-
ration to increase its maximum allowed runtime, according to
an example embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Instruction Set Coupling

Free unused instructions may be available within an
instruction set (ISA) of a CPU. One or a plurality of these free
unused instructions may be used for controlling VPUs (VPU-
CODE).

By decoding a VPUCODE, a configuration unit (CT) of a
VPU may be triggered, executing certain sequences as a
function of the VPUCODE.

For example, a VPUCODE may trigger the loading and/or
execution of configurations by the configuration unit (CT) for
aVPU.

Command Transfer to the VPU

In an one embodiment, a VPUCODE may be translated
into various VPU commands via an address mapping table,
e.g., which may be constructed by the CPU. The configura-
tion table may be set as a function of the CPU program or code
segment executed.

After the arrival of a load command, the VPU may load
configurations from a separate memory or a memory shared
with the CPU, for example. In particular, a configuration may
be contained in the code of the program currently being
executed.

After receiving an execution command, a VPU may
execute the configuration to be executed and will perform the
corresponding data processing. The termination of data pro-
cessing may be displayed on the CPU by a termination signal
(TERM).

VPUCODE Processing on the CPU

When a VPUCODE occurs, wait cycles may be executed
on the CPU until the termination signal (TERM) for termi-
nation of data processing by the VPU arrives.

In one example embodiment, processing may be continued
by processing the next code. If there is another VPUCODE,
processing may then wait for the termination of the preceding
code, or all VPUCODE:s started may be queued into a pro-
cessing pipeline, or a task change may be executed as
described below.

Termination of data processing may be signaled by the
arrival of the termination signal (TERM) in a status register.
The termination signals may arrive in the sequence of a pos-
sible processing pipeline. Data processing on the CPU may be
synchronized by checking the status register for the arrival of
a termination signal.

In one example embodiment, if an application cannot be
continued before the arrival of TERM, e.g., due to data depen-
dencies, a task change may be triggered.

Coupling of Coprocessors (Loose Coupling)

According to DE 101 10 530, loose couplings, in which the
VPUs work largely as independent coprocessors, may be
established between processors and VPUs.

Such a coupling typically involves one or more common
data sources and data sinks, e.g., via common bus systems
and/or shared memories. Data may be exchanged between a
CPU and a VPU via DMAs and/or other memory access
controllers. Data processing may be synchronized, e.g., viaan
interrupt control or a status query mechanism (e.g., polling).
Coupling of Arithmetic Units (Snug Coupling)

A snug coupling may correspond to a direct coupling of a
VPU into the instruction set of a CPU as described above.

In a direct coupling of an arithmetic unit, a high reconfigu-
ration performance may be of import. Therefore the wave
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reconfiguration according to DE 198 07 872, DE 199 26 538,
DE 100 28 397 may be used. In addition, the configuration
words may be preloaded in advance according to DE 196 54
846, DE 199 26 538, DE 100 28 397, DE 102 12 621 so that
on execution of the instruction, the configuration may be
configured particularly rapidly (e.g., by wave reconfiguration
in the optimum case within one clock pulse).

For the wave reconfiguration, the presumed configurations
to be executed may be recognized in advance, i.e., estimated
and/or predicted, by the compiler at the compile time and
preloaded accordingly at the runtime as far as possible. Pos-
sible methods are described, for example, in DE 196 54 846,
DE 197 04 728, DE 198 07 872, DE 199 26 538, DE 100 28
397, DE 102 12 621.

At the point in time of execution of the instruction, the
configuration or a corresponding configuration may be
selected and executed. Such methods are known according to
the publications cited above. Configurations may be pre-
loaded into shadow configuration registers, as is known, for
example, from DE 197 04 728 (FIG. 6) and DE 102 12 621
(FIG. 14) in order to then be available particularly rapidly on
retrieval.

Data Transfers

One possible embodiment of the present invention, e.g., as
shown in FIG. 1, may involve different data transfers between
aCPU (0101) and VPU (0102). Configurations to be executed
on the VPU may be selected by the instruction decoder (0105)
of the CPU, which may recognize certain instructions
intended for the VPU and trigger the CT (0106) so the CT
loads into the array of PAEs (PA, 0108) the corresponding
configurations from a memory (0107) which may be assigned
to the CT and may be, for example, shared with the CPU or the
same as the working memory of the CPU.

It should be pointed out explicitly that for reasons of sim-
plicity, only the relevant components (in particular the CPU)
are shown in FIG. 1, but a substantial number of other com-
ponents and networks may be present.

Three methods that may be used, e.g., individually or in
combination, are described below.

Registers

In a register coupling, the VPU may obtain data from a
CPU register (0103), process it and write it back to a CPU
register or the CPU register.

Synchronization mechanisms may be used between the
CPU and the VPU.

For example, the VPU may receive an RDY signal (DE 196
51075,DE 110 10 530) due to the fact that data is written into
a CPU register by the CPU and then the data written inmay be
processed. Readout of data from a CPU register by the CPU
may generate an ACK signal (DE 196 51 075, DE 110 10
530), so that data retrieval by the CPU is signaled to the VPU.
CPUs typically do not provide any corresponding mecha-
nisms.

Two possible approaches are described in greater detail
here.

One approach is to have data synchronization performed
via a status register (0104). For example, the VPU may dis-
play in the status register successful readout of data from a
register and the ACK signal associated with it (DE 196 51
075, DE 110 10 530) and/or writing of data into a register and
the associated RDY signal (DE 196 51 075, DE 110 10 530).
The CPU may first check the status register and may execute
waiting loops or task changes, for example, until the RDY or
ACK signal has arrived, depending on the operation. Then the
CPU may execute the particular register data transfer.

In one embodiment, the instruction set of the CPU may be
expanded by load/store instructions having an integrated sta-
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tus query (load_rdy, store_ack). For example, for a store_ack,
anew data word may be written into a CPU register only when
the register has previously been read out by the CPU and an
ACK has arrived. Accordingly, load_rdy may read data out of
a CPU register only when the VPU has previously written in
new data and generated an RDY.

Data belonging to a configuration to be executed may be
written into or read out of the CPU registers successively,
more or less through block moves according to the related art.
Block move instructions implemented, if necessary, may be
expanded through the integrated RDY/ACK status query
described above.

In an additional or alternative embodiment, data process-
ing within the VPUs connected to the CPU may require
exactly the same number of clock pulses as does data pro-
cessing in the computation pipeline of the CPU. This concept
may be used ideally in modern high-performance CPUs hav-
ing a plurality of pipeline stages (>20) in particular. An advan-
tage may bethat no special synchronization mechanisms such
as RDY/ACK are necessary. In this procedure, it may only be
required that the compiler ensure that the VPU maintains the
required number of clock pulses and, if necessary, balance out
the data processing, e.g., by inserting delay stages such as
registers and/or the fall-through FIFOs known from DE 110
10 530, FIGS. 9-10.

Another example embodiment permits a different runtime
characteristic between the data path of the CPU and the VPU.
To do so, the compiler may first re-sort the data accesses to
achieve at least essentially maximal independence between
the accesses through the data path of the CPU and the VPU.
The maximum distance thus defines the maximum runtime
difference between the CPU data path and the VPU. In other
words, for example through a reordering method such as that
known from the related art, the runtime difference between
the CPU data path and the VPU data path may be equalized.
If the runtime difference is too great to be compensated by
re-sorting the data accesses, then NOP cycles (i.e., cycles in
which the CPU data path is not processing any data) may be
inserted by the compiler and/or wait cycles may be generated
in the CPU data path by the hardware until the required data
has been written from the VPU into the register. The registers
may therefore be provided with an additional bit which indi-
cates the presence of valid data.

It will appreciated that a variety of modifications and of
different embodiments of these methods are possible.

The wave reconfiguration mentioned above, e.g., preload-
ing of configurations into shadow configuration registers,
may allow successive starting of a new VPU instruction and
the corresponding configuration as soon as the operands of
the preceding VPU instruction have been removed from the
CPU registers. The operands for the new instruction may be
written to the CPU registers immediately after the start of the
instruction. According to the wave reconfiguration method,
the VPU may be reconfigured successively for the new VPU
instruction on completion of data processing of the previous
VPU instruction and the new operands may be processed.
Bus Accesses

In addition, data may be exchanged between a VPU and a
CPU via suitable bus accesses on common resources.

Cache

Ifthere is to be an exchange of data that has been processed
recently by the CPU and that may therefore still be in the
cache (0109) of the CPU and/or may be processed immedi-
ately thereafter by the CPU and therefore would logically still
be in the cache of the CPU, it may be read out of the cache of
the CPU and/or written into the cache of the CPU preferably
by the VPU. This may be ascertained by the compiler largely
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in advance of the compile time of the application through
suitable analyses, and the binary code may be generated
accordingly.

Bus

If there is to be an exchange of data that is presumably not
in the cache of the CPU and/or will presumably not be needed
subsequently in the cache of the CPU, this data may be read
directly from the external bus (0110) and the associated data
source (e.g., memory, peripherals) and/or written to the exter-
nal bus and the associated data sink (e.g., memory, peripher-
als), e.g., preferably by the VPU. This bus may be, e.g., the
same as the external bus of the CPU (0112 and dashed line).
This may be ascertained by the compiler largely in advance of
the compile time of the application through suitable analyses,
and the binary code may be generated accordingly.

In a transfer over the bus, bypassing the cache, a protocol
(0111) may be implemented between the cache and the bus,
ensuring correct contents of the cache. For example, the
MESI protocol from the related art may be used for this
purpose.

Cache/RAM-PAE Coupling

In one example embodiment, a method may be imple-
mented to have a snug coupling of RAM-PAEs to the cache of
the CPU. Data may thus be transferred rapidly and efficiently
between the memory databus and/or IO databus and the VPU.
The external data transfer may be largely performed auto-
matically by the cache controller.

This method may allow rapid and uncomplicated data
exchange in task change procedures in particular, for realtime
applications and multithreading CPUs with a change of
threads.

Two example methods are described below:

a) RAM-PAF/Cache Coupling

The RAM-PAE may transmit data, e.g., for reading and/or
writing of external data, e.g., main memory data, directly to
and/or from the cache. In one embodiment, a separate databus
may be used according to DE 196 54 595 and DE 199 26 538.
Then, independently of data processing within the VPU and,
for example, via automatic control, e.g., by independent
address generators, data may then be transferred to or from
the cache via this separate databus.

b) RAM-PAE as a Cache Slice

In one example embodiment, the RAM-PAEs may be pro-
vided without any internal memory but may be instead
coupled directly to blocks (slices) of the cache. In other
words, the RAM-PAEs may be provided with, e.g., only the
bus triggers for the local buses plus optional state machines
and/or optional address generators, but the memory may be
within a cache memory bank to which the RAM-PAE may
have direct access. Each RAM-PAE may have its own slice
within the cache and may access the cache and/or its own slice
independently and, e.g., simultaneously with the other RAM-
PAFEs and/or the CPU. This may be implemented by con-
structing the cache of multiple independent banks (slices).

If the content of a cache slice has been modified by the
VPU, it may be marked as “dirty,” whereupon the cache
controller may automatically write this back to the external
memory and/or main memory.

For many applications, a write-through strategy may addi-
tionally be implemented or selected. In this strategy, data
newly written by the VPU into the RAM-PAEs may be
directly written back to the external memory and/or main
memory with each write operation. This may additionally
eliminate the need for labeling data as “dirty” and writing it
back to the external memory and/or main memory with a task
change and/or thread change.
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In both cases, it may be expedient to block certain cache
regions for access by the CPU for the RAM-PAE/cache cou-
pling.

An FPGA (0113) may be coupled to the architecture
described here, e.g., directly to the VPU, to permit finely
granular data processing and/or a flexible adaptable interface
(0114) (e.g., various serial interfaces (V24, USB, etc.), vari-
ous parallel interfaces, hard drive interfaces, Ethernet, tele-
communications interfaces (a/b, TO, ISDN, DSL, etc.)) to
other modules and/or the external bus system (0112). The
FPGA may be configured from the VPU architecture, e.g., by
the CT, and/or by the CPU. The FPGA may be operated
statically, i.e., without reconfiguration at runtime and/or
dynamically, i.e., with reconfiguration at runtime.

FPGAs in ALUs

FPGA elements may be included in a “processor-oriented”
embodiment within an ALU-PAE. To do so, an FPGA data
path may be coupled in parallel to the ALU or in a preferred
embodiment, connected upstream or downstream from the
ALU.

Within algorithms written in the high-level languages such
as C, bit-oriented operations usually occur very sporadically
and are not particularly complex. Therefore, an FPGA struc-
ture of a few rows oflogic elements, each interlinked by a row
of' wiring troughs, may be sufficient. Such a structure may be
easily and inexpensively programmably linked to the ALU.
One essential advantage of the programming methods
described below may be that the runtime is limited by the
FPGA structure, so that the runtime characteristic of the ALU
is not affected. Registers need only be allowed for storage of
data for them to be included as operands in the processing
cycle taking place in the next clock pulse.

In one example embodiment, additional configurable reg-
isters may be optionally implemented to establish a sequen-
tial characteristic of the function through pipelining, for
example. This may be advantageous, for example when feed-
back occurs in the code for the FPGA structure. The compiler
may then map this by activation of such registers per configu-
ration and may thus correctly map sequential code. The state
machine of the PAE which controls its processing may be
notified of the number of registers added per configuration so
that it may coordinate its control, e.g., also the PAE-external
data transfer, to the increased latency time

An FPGA structure which may be automatically switched
to neutral in the absence of configuration, e.g., after a reset,
i.e., passing the input data through without any modification,
may be provided. Thus if FPGA structures are not used,
configuration data to set them may be omitted, thus eliminat-
ing configuration time and configuration data space in the
configuration memories.

Operating System Mechanisms

It may be that the methods described here do not at first
provide any particular mechanism for operating system sup-
port. In other words, it may be desirable to ensure that an
operating system to be executed behaves according to the
status of'a VPU to be supported. Schedulers may be required.

In a snug arithmetic unit coupling, it may be desirable to
query the status register of the CPU into which the coupled
VPU has entered its data processing status (termination sig-
nal). If additional data processing is to be transferred to the
VPU, and if the VPU has not yet terminated the prior data
processing, the system may wait or a task change may be
implemented.

Sequence control of a VPU may essentially be performed
directly by a program executed on the CPU, representing
more or less the main program which may swap out certain
subprograms with the VPU.
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For a coprocessor coupling, mechanisms which may be
controlled by the operating system, e.g., the scheduler, may
be used, whereby the sequence control of a VPU may essen-
tially be performed directly by a program executed on the
CPU, representing more or less the main program which may
swap out certain subprograms with the VPU.

After transfer of a function to a VPU, a scheduler

1. may have the current main program continue to run on
the CPU if it is able to run independently and in parallel
with the data processing on a VPU;

2. if or as soon as the main program must wait for the end
of data processing on the VPU, the task scheduler may
switch to a different task (e.g., another main program).
The VPU may continue processing in the background
regardless of the current CPU task.

It may be required of each newly activated task to check
before use (if it uses the VPU) to determine whether the VPU
is available for data processing or is still currently processing
data. In the latter case, it may be required of the newly created
task to wait for the end of data processing or a task change
may be implemented.

An efficient method may be based on descriptor tables,
which may be implemented as follows, for example:

On calling the VPU, each task may generate one or more
tables (VPUPROC) having a suitable defined data format in
the memory area assigned to it. This table may includes all the
control information for a VPU such as the program/configu-
ration(s) to be executed (or the pointer(s) to the corresponding
memory locations) and/or memory location(s) (or the
pointer(s) thereto) and/or data sources (or the pointer(s)
thereto) of the input data and/or the memory location(s) (or
the pointer(s) thereto) of the operands or the result data.

According to FIG. 2, a table or an interlinked list (LIN-
KLIST, 0201), for example, in the memory area of the oper-
ating system may point to all VPUPROC tables (0202) in the
order in which they are created and/or called.

Data processing on the VPU may now proceed by a main
program creating a VPUPROC and calling the VPU via the
operating system. The operating system may then create an
entry in the LINKLIST. The VPU may process the LIN-
KLIST and execute the VPUPROC referenced. The end of a
particular data processing run may be indicated through a
corresponding entry into the LINKLIST and/or VPUCALL
table. Alternatively, interrupts from the VPU to the CPU may
also be used as an indication and also for exchanging the VPU
status, if necessary.

In this method, the VPU may functions largely indepen-
dently of the CPU. In particular, the CPU and the VPU may
perform independent and different tasks per unit of time. It
may be required only that the operating system and/or the
particular task monitor the tables (LINKLIST and/or VPU-
PROC).

Alternatively, the LINKLIST may also be omitted by inter-
linking the VPUPROCSs together by pointers as is known from
lists, for example. Processed VPUPROCs may be removed
from the list and new ones may be inserted into the list. This
is conventional method, and further explanation thereof is
therefore not required for an understanding of the present
invention.

Multithreading/Hyperthreading

In one example embodiment, multithreading and/or hyper-
threading technologies may be used in which a scheduler
(preferably implemented in hardware) may distribute finely
granular applications and/or application parts (threads)
among resources within the processor. The VPU data path
may be regarded as a resource for the scheduler. A clean
separation of the CPU data path and the WU data path may
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have already been given by definition due to the implemen-
tation of multithreading and/or hyperthreading technologies
in the compiler. In addition, an advantage may be that when
the WU resource is occupied, it may be possible to simply
change within one task to another task and thus achieve better
utilization of resources. At the same time, parallel utilization
of the CPU data path and WU data path may also be facili-
tated.

To this extent, multithreading and/or hyperthreading may
constitute a method which may be preferred in comparison
with the LINKLIST described above.

The two methods may operate in a particularly efficient
manner with regard to performance, e.g., if an architecture
that allows reconfiguration superimposed with data process-
ing is used as the VPU, e.g., the wave reconfiguration accord-
ing to DE 198 07 872, DE 199 26 538, DE 100 28 397.

Itis may thus be possible to start a new data processing run
and any reconfiguration associated with it immediately after
reading the last operands out of the data sources. In other
words, for synchronization, reading of the last operands may
be required, e.g., instead of the end of data processing. This
may greatly increase the performance of data processing.

FIG. 3 shows a possible internal structure of a micropro-
cessor or microcontroller. This shows the core (0301) of a
microcontroller or microprocessor. The exemplary structure
also includes a load/store unit for transferring data between
the core and the external memory and/or the peripherals. The
transfer may take place via interface 0303 to which additional
units such as MMUs, caches, etc. may be connected.

In a processor architecture according to the related art, the
load/store unit may transfer the data to or from a register set
(0304) which may then store the data temporarily for further
internal processing. Further internal processing may take
place on one or more data paths, which may be designed
identically or differently (0305). There may also be in par-
ticular multiple register sets, which may in turn be coupled to
different data paths, if necessary (e.g., integer data paths,
floating-point data paths, DSP data paths/multiply-accumu-
late units).

Data paths may take operands from the register unit and
write the results back to the register unit after data processing.
An instruction loading unit (opcode fetcher, 0306) assigned
to the core (or contained in the core) may load the program
code instructions from the program memory, translate them
and then trigger the necessary work steps within the core. The
instructions may be retrieved via an interface (0307) to a code
memory with MMUE s, caches, etc., connected in between, if
necessary.

The VPU data path (0308) parallel to data path 0305 may
have reading access to register set 0304 and may have writing
access to the data register allocation unit (0309) described
below. A construction of a VPU data path is described, for
example, in DE 196 51 075, DE 100 50 442, DE 102 06 653
filed by the present applicant and in several publications by
the present applicant.

The VPU data path may be configured via the configuration
manager (CT) 0310 which may load the configurations from
an external memory via a bus 0311. Bus 0311 may be iden-
tical to 0307, and one or more caches may be connected
between 0311 and 0307 and/or the memory, depending on the
design.

The configuration that is to be configured and executed at a
certain point in time may be defined by opcode fetcher 0306
using special opcodes.

Therefore, a number of possible configurations may be
allocated to a number of opcodes reserved for the VPU data
path. The allocation may be performed via a reprogrammable
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lookup table (see 0106) upstream from 0310 so that the allo-
cation may be freely programmable and may be variable
within the application.

In one example embodiment, which may be implemented
depending on the application, the destination register of the
data computation may be managed in the data register allo-
cation unit (0309) on calling a VPU data path configuration.
The destination register defined by the opcode may be there-
fore loaded into a memory, i.e., register (0314), which may be
designed as a FIFO—in order to allow multiple VPU data
path calls in direct succession and without taking into account
the processing time of the particular configuration. As soon as
one configuration supplies the result data, it may be linked
(0315) to the particular allocated register address and the
corresponding register may be selected and written to 0304.

A plurality of VPU data path calls may thus be performed
in direct succession and, for example, with overlap. It may be
required to ensure, e.g., by compiler or hardware, that the
operands and result data are re-sorted with respect to the data
processing in data path 0305, so that there is no interference
due to different runtimes in 0305 and 0308.

If the memory and/or FIFO 0314 is full, processing of any
new configuration for 0308 may be delayed. Reasonably,
0314 may hold as much register data as 0308 is able to hold
configurations in a stack (see DE 197 04 728, DE 10028 397,
DE 102 12 621). In addition to management by the compiler,
the data accesses to register set 0304 may also be controlled
via memory 0314.

If'there is an access to a register that is entered into 0314, it
may be delayed until the register has been written and its
address has been removed from 0314.

Alternatively, the simple synchronization methods accord-
ing to 0103 may be used, a synchronous data reception reg-
ister optionally being provided in register set 0304; for read-
ing access to this data reception register, it may be required
that VPU data path 0308 has previously written new data to
the register. Conversely, to write data by the VPU data path, it
may be required that the previous data has been read. To this
extent, 0309 may be omitted without replacement.

When a VPU data path configuration that has already been
configured is called, it may be that there is no longer any
reconfiguration. Data may be transferred immediately from
register set 0304 to the VPU data path for processing and may
then be processed. The configuration manager may save the
configuration code number currently loaded in a register and
compare it with the configuration code number that is to be
loaded and that is transferred to 0310 via a lookup table (see
0106), for example. It may be that the called configuration
may be reconfigured upon a condition that the numbers do not
match.

The load/store unit is depicted only schematically and fun-
damentally in FIG. 3; one particular embodiment is shown in
detail in FIGS. 4 and 5. The VPU data path (0308) may be able
to transfer data directly with the load/store unit and/or the
cache via a bus system 0312; data may be transferred directly
between the VPU data path (0308) and peripherals and/or the
external memory via another possible data path 0313,
depending on the application.

FIG. 4 shows one example embodiment of the load/store
unit.

According to a principle of data processing of the VPU
architecture, coupled memory blocks which function more or
less as a set of registers for data blocks may be provided on the
array of ALU-PAEs. This method is known from DE 196 54
846, DE 101 39 170, DE 199 26 538, DE 102 06 653. As
discussed below, it may be desirable here to process LOAD
and STORE instructions as a configuration within the VPU,
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which may make interlinking of the VPU with the load/store
unit (0401) of the CPU superfluous. In other words, the VPU
may generate its read and write accesses itself, so a direct
connection (0404) to the external memory and/or main
memory may be appropriate. This may be accomplished, e.g.,
via a cache (0402), which may be the same as the data cache
of the processor. The load/store unit of the processor (0401)
may access the cache directly and in parallel with the VPU
(0403) without having a data path for the VPU—in contrast
with 0302.

FIG. 5 shows particular example couplings of the VPU to
the external memory and/or main memory via a cache.

A method of connection may be via an 1O terminal of the
VPU, as is described, for example, in DE 196 51 075.9-53,
DE 196 54 595.1-53, DE 100 50 442.6, DE 102 06 653.1;
addresses and data may be transferred between the peripher-
als and/or memory and the VPU by way of this IO terminal.
However, direct coupling between the RAM-PAEs and the
cache may be particularly efficient, as described in DE 196 54
595 and DE 199 26 538. An example given for a reconfig-
urable data processing element is a PAE constructed from a
main data processing unit (0501) which is typically designed
as an ALU, RAM, FPGA, 10 terminal and two lateral data
transfer units (0502, 0503) which in turn may have an AL U
structure and/or a register structure. In addition, the array-
internal horizontal bus systems 0504 ¢ and 0504 5 belonging
to the PAE are also shown.

In FIG. 5A, RAM-PAEs (0501 a) which each may have its
own memory according to DE 196 54 595 and DE 199 26 538
may be coupled to acache 0510 via a multiplexer 0511. Cache
controllers and the connecting bus of the cache to the main
memory are not shown. The RAM-PAEs may have in one
example embodiment a separate databus (0512) having its
own address generators (see also DE 102 06 653) in order to
be able to transtfer data independently to the cache.

FIG. 5B shows one example embodiment in which 0501 5
does not denote full-quality RAM-PAEs but instead includes
only the bus systems and lateral data transfer units (0502,
0503). Instead of the integrated memory in 0501, only one bus
connection (0521) to cache 0520 may be implemented. The
cache may be subdivided into multiple segments 05201,
05202 ... 0520 , each being assigned to a 0501 b and, in one
embodiment, reserved exclusively for this 0501 5. The cache
thus more or less may represent the quantity of all RAM-
PAFEs of the VPU and the data cache (0522) of the CPU.

The VPU may write its internal (register) data directly into
the cache and/or read the data directly out of the cache.
Modified data may be labeled as “dirty,” whereupon the cache
controller (not shown here) may automatically update this in
the main memory. Write-through methods in which modified
data is written directly to the main memory and management
of the “dirty data” becomes superfluous are available as an
alternative.

Direct coupling according to FIG. 5B may be desirable
because it may be extremely efficient in terms of area and may
be easy to handle through the VPU because the cache con-
trollers may be automatically responsible for the data transfer
between the cache—and thus the RAM-PAE—and the main
memory.

FIG. 6 shows a coupling of an FPGA structure to a data
path considering the example of the VPU architecture.

The main data path of a PAE may be 0501. FPGA struc-
tures may be inserted (0611) directly downstream from the
input registers (see PACT02, PACT22) and/or inserted (0612)
directly upstream from the output of the data path to the bus
system.
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One possible FPGA structure is shown in 0610, the struc-
ture being based on PACT13, FIG. 35.

The FPGA structure may be input into the ALU via a data
input (0605) and a data output (0606). In alternation

a) logic elements may be arranged in a row (0601) to
perform bit-by-bit logic operations (AND, OR, NOT,
XOR, etc.) on incoming data. These logic elements may
additionally have local bus connections; registers may
likewise be provided for data storage in the logic ele-
ments;

b) memory elements may be arranged in a row (0602) to
store data of the logic elements bit by bit. Their function
may be to represent as needed the chronological uncou-
pling—i.e., the cyclical behavior—of a sequential pro-
gram if so required by the compiler. In other words,
through these register stages the sequential performance
of'a program in the form of a pipeline may be simulated
within 0610.

Horizontal configurable signal networks may be provided
between elements 0601 and 0602 and may be constructed
according to the known FPGA networks. These may allow
horizontal interconnection and transmission of signals.

In addition, a vertical network (0604) may be provided for
signal transmission; it may also be constructed like the known
FPGA networks. Signals may also be transmitted past mul-
tiple rows of elements 0601 and 0602 via this network.

Since elements 0601 and 0602 typically already have a
number of vertical bypass signal networks, 0604 is only
optional and may be necessary for a large number of rows.

For coordinating the state machine of the PAE to the par-
ticular configured depth of the pipeline in 0610, i.e., the
number (NRL) of register stages (0602) configured into it
between the input (0605) and the output (0606), a register
0607 may be implemented into which NRL may be config-
ured. On the basis of this data, the state machine may coor-
dinate the generation of the PAE-internal control cycles and
may also coordinate the handshake signals (PACTO2
PACT16, PACT18) for the PAE-external bus systems.

Additional possible FPGA structures are known from Xil-
inx and Altera, for example. In an embodiment of the present
invention, these may have a register structure according to
0610.

FIGS. 7A-7C show several strategies for achieving code
compatibility between VPUs of different sizes:

0701 is an ALU-PAE (0702) RAM-PAE (0703) device
which may define a possible “small” VPU. It is assumed
in the following discussion that code has been generated
for this structure and is now to be processed on other
larger VPUs.

In a first possible embodiment, new code may be compiled
for the new destination VPU. This may offer an advantage in
that functions no longer present may be simulated in a new
destination VPU by having the compiler instantiate macros
for these functions which then simulate the original function.
The simulation may be accomplished, e.g., through the use of
multiple PAEs and/or by using sequencers as described below
(e.g., for division, floating point, complex mathematics, etc.)
and as known from PACTO02 for example. However, with this
method, binary compatibility may be lost.

The methods illustrated in FIGS. 7A-7C may have binary
code compatibility.

According to a first method, wrapper code may be inserted
(0704), lengthening the bus systems between a small ALU-
PAE array and the RAM-PAFEs. The code may contain, e.g.,
only the configuration for the bus systems and may be
inserted from a memory into the existing binary code, e.g., at
the configuration time and/or at the load time.
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However, this method may result in a lengthy information
transfer time over the lengthened bus systems. This may be
disregarded at comparatively low frequencies (FIG. 7A, a)).

FIG. 7A, b) shows one example embodiment in which the
lengthening of the bus systems has been compensated and
thus is less critical in terms of frequency, which halves the
runtime for the wrapper bus system compared to FIG. 7A, a).

For higher frequencies, the method according to FIG. 7B
may be used; in this method, a larger VPU may represent a
superset of compatible small VPUs (0701) and the complete
structures of 0701 may be replicated. This is a method of
providing direct binary compatibility.

In one example method according to FIG. 7C, additional
high-speed bus systems may have a terminal (0705) at each
PAE or each group of PAEs. Such bus systems are known
from other patent applications by the present applicant, e.g.,
PACTO7. Data may be transferred via terminals 0705 to a
high-speed bus system (0706) which may then transfer the
data in a performance-efficient manner over a great distance.
Such high-speed bus systems may include, for example, Eth-
ernet, RapidlO, USB, AMBA, RAMBUS and other industry
standards.

The connection to the high-speed bus system may be
inserted either through a wrapper, as described for FIG. 7A, or
architectonically, as already provided for 0701. In this case, at
0701 the connection may be relayed directly to the adjacent
cell and without use thereof. The hardware abstracts the
absence of the bus system here.

Reference was made above to the coupling between a pro-
cessor and a VPU in general and/or even more generally to a
unit that is completely and/or partially and/or rapidly recon-
figurable in particular at runtime, i.e., completely in a few
clock cycles. This coupling may be supported and/or
achieved through the use of certain operating methods and/or
through the operation of preceding suitable compiling. Suit-
able compiling may refer, as necessary, to the hardware in
existence in the related art and/or improved according to the
present invention.

Parallelizing compilers according to the related art gener-
ally use special constructs such as semaphores and/or other
methods for synchronization. Technology-specific methods
are typically used. Known methods, however, are not suitable
for combining functionally specified architectures with the
particular time characteristic and imperatively specified algo-
rithms. The methods used therefore offer satisfactory
approaches only in specific cases.

Compilers for reconfigurable architectures, in particular
reconfigurable processors, generally use macros which have
been created specifically for the certain reconfigurable hard-
ware, usually using hardware description languages (e.g.,
Verilog, VHDL, system C) to create the macros. These mac-
ros are then called (instantiated) from the program flow by an
ordinary high-level language (e.g., C, C++).

Compilers for parallel computers are known, mapping pro-
gram parts on multiple processors on a coarsely granular
structure, usually based on complete functions or threads. In
addition, vectorizing compilers are known, converting exten-
sive linear data processing, e.g., computations of large terms,
into a vectorized form and thus permitting computation on
superscalar processors and vector processors (e.g., Pentium,
Cray).

This patent therefore describes a method for automatic
mapping of functionally or imperatively formulated compu-
tation specifications onto different target technologies, in par-
ticular onto ASICs, reconfigurable modules (FPGAs,
DPGAs, VPUs, ChessArray, KressArray, Chameleon, etc.,
hereinafter referred to collectively by the term VPU), sequen-
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tial processors (CISC-/RISC-CPUs, DSPs, etc., hereinafter
referred to collectively by the term CPU) and parallel proces-
sor systems (SMP, MMP, etc.).

VPUs are essentially made up of a multidimensional,
homogeneous or inhomogeneous, flat or hierarchical array
(PA) of cells (PAEs) capable of executing any functions, e.g.,
logic and/or arithmetic functions (ALU-PAEs) and/or
memory functions (RAM-PAEs) and/or network functions.
The PAEs may be assigned a load unit (CT) which may
determine the function of the PAEs by configuration and
reconfiguration, if necessary.

This method is based on an abstract parallel machine
model which, in addition to the finite automata, also may
integrate imperative problem specifications and permit effi-
cient algorithmic derivation of an implementation on differ-
ent technologies.

The present invention is a refinement of the compiler tech-
nology according to DE 101 39 170.6, which describes in
particular the close XPP connection to a processor within its
data paths and also describes a compiler particularly suitable
for this purpose, which also uses XPP stand-alone systems
without snug processor coupling.

At least the following compiler classes are known in the
related art: classical compilers, which often generate stack
machine code and are suitable for very simple processors that
are essentially designed as normal sequencers (see N. Wirth,
Compilerbau, Teubner Verlag).

Vectorizing compilers construct largely linear code which
is intended to run on special vector computers or highly
pipelined processors. These compilers were originally avail-
able for vector computers such as CRAY. Modern processors
such as Pentium require similar methods because of the long
pipeline structure. Since the individual computation steps
proceed in a vectorized (pipelined) manner, the code is there-
fore much more efficient. However, the conditional jump
causes problems for the pipeline. Therefore, a jump predic-
tion which assumes a jump destination may be advisable. If
the assumption is false, however, the entire processing pipe-
line must be deleted. In other words, each jump is problem-
atical for these compilers and there is no parallel processing in
the true sense. Jump predictions and similar mechanisms
require a considerable additional complexity in terms ofhard-
ware.

Coarsely granular parallel compilers hardly exist in the
true sense; the parallelism is typically marked and managed
by the programmer or the operating system, e.g., usually on
the thread level in the case of MMP computer systems such as
various IBM architectures, ASCII Red, etc. A thread is a
largely independent program block or an entirely different
program. Threads are therefore easy to parallelize on a
coarsely granular level. Synchronization and data consis-
tency must be ensured by the programmer and/or operating
system. This is complex to program and requires a significant
portion of the computation performance of a parallel com-
puter. Furthermore, only a fraction of the parallelism that is
actually possible is in fact usable through this coarse paral-
lelization.

Finely granular parallel compilers (e.g., VLIW) attempt to
map the parallelism on a finely granular level into VLIW
arithmetic units which are able to execute multiple computa-
tion operations in parallel in one clock pulse but have a
common register set. This limited register set presents a sig-
nificant problem because it must provide the data for all
computation operations. Furthermore, data dependencies and
inconsistent read/write operations (LOAD/STORE) make
parallelization difficult.
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Reconfigurable processors have a large number of inde-
pendent arithmetic units which are not interconnected by a
common register set but instead via buses. Therefore, it is
easy to construct vector arithmetic units while parallel opera-
tions may also be performed easily. Contrary to traditional
register concepts, data dependencies are resolved by the bus
connections.

With respect to embodiments of the present invention, it
has been recognized that the concepts of vectorizing compil-
ers and parallelizing compilers (e.g., VLIW) are to be applied
simultaneously for a compiler for reconfigurable processors
and thus they are to be vectorized and parallelized on a finely
granular level.

An advantage may be that the compiler need not map onto
a fixedly predetermined hardware structure but instead the
hardware structure may be configured in such a way that it
may be optimally suitable for mapping the particular com-
piled algorithm.

Description of the Compiler and Data Processing Device
Operating Methods According to Embodiments of the
Present Invention

Modern processors usually have a set of user-definable
instructions (UDI) which are available for hardware expan-
sions and/or special coprocessors and accelerators. If UDIs
are not available, processors usually at least have free instruc-
tions which have not yet been used and/or special instructions
for coprocessors—for the sake of simplicity, all these instruc-
tions are referred to collectively below under the heading
UDIs.

A quantity of these UDIs may now be used according to
one embodiment of the present invention to trigger a VPU that
has been coupled to the processor as a data path. For example,
UDIs may trigger the loading and/or deletion and/or initial-
ization of configurations and specifically a certain UDI may
refer to a constant and/or variable configuration.

Configurations may be preloaded into a configuration
cache which may be assigned locally to the VPU and/or
preloaded into configuration stacks according to DE 196 51
075.9-53, DE 197 04 728.9 and DE 102 12 621.6-53 from
which they may be configured rapidly and executed at runt-
ime on occurrence of a UDI that initializes a configuration.
Preloading the configuration may be performed in a configu-
ration manager shared by multiple PAEs or PAs and/or in a
local configuration memory on and/or in a PAE, in which case
it may be required for only the activation to be triggered.

A set of configurations may be preloaded. In general, one
configuration may correspond to a load UDI. In other words,
the load UDIs may be each referenced to a configuration. At
the same time, it may also be possible with aload UDI to refer
to a complex configuration arrangement with which very
extensive functions that may require multiple reloading of the
array during execution, a wave reconfiguration, and/or even a
repeated wave reconfiguration, etc., referenceable by an indi-
vidual UDI.

During operation, configurations may also be replaced by
others and the load UDIs may be re-referenced accordingly. A
certain load UDI may thus reference a first configuration at a
first point in time and at a second point in time it may refer-
ence a second configuration that has been newly loaded in the
meantime. This may occur by the fact that an entry in a
reference list which is to be accessed according to the UDI is
altered.

Within the scope of the present invention, a LOAD/STORE
machine model, such as that known from RISC processors,
for example, may be used as the basis for operation of the
VPU. Each configuration may be understood to be one
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instruction. The LOAD and STORE configurations may be
separate from the data processing configurations.

A data processing sequence (LOAD-PROCESS-STORE)
may thus take place as follows, for example:

1. LOAD Configuration

Loading the data from an external memory, for example, a
ROM of an SOC into which the entire arrangement may be
integrated and/or from peripherals into the internal memory
bank (RAM-PAE, see DE 196 54 846.2-53, DE 100 50
442.6). The configuration may include, for example if neces-
sary, address generators and/or access controls to read data
out of processor-external memories and/or peripherals and
enter it into the RAM-PAEs. The RAM-PAEs may be under-
stood as multidimensional data registers (e.g., vector regis-
ters) for operation.

2.—(n-1) Data Processing Configurations

The data processing configurations may be configured
sequentially into the PA. The data processing may take place
exclusively between the RAM-PAEs—which may be used as
multidimensional data registers—according to a LOAD/
STORE (RISC) processor.

STORE Configuration

Writing the data from the internal memory banks (RAM-
PAFEs) to the external memory and/or to the peripherals. The
configuration may include address generators and/or access
controls to write data from the RAM-PAFEs to the processor-
external memories and/or peripherals.

Reference is made to PACT11 for the principles of LOAD/
STORE operations.

The address generating functions of the LOAD/STORE
configurations may be optimized so that, for example, in the
case of a nonlinear access sequence of the algorithm to exter-
nal data, the corresponding address patterns may be generated
by the configurations. The analysis of the algorithms and the
creation of the address generators for LOAD/STORE may be
performed by the compiler.

This operating principle may be illustrated easily by the
processing of loops. For example, a VPU having 256-entry-
deep RAM-PAEs shall be assumed:

Example A

for i:=1 to 10,000

1. LOAD-PROCESS-STORE cycle: load and process
1...256

2. LOAD-PROCESS-STORE cycle: load and process
257 ...512

3. LOAD-PROCESS-STORE cycle: load and process
513...768

Example B

for i:=1 to 1000
for j:=1to 256

1. LOAD-PROCESS-STORE cycle: load and process
i=1;j=1...256

2. LOAD-PROCESS-STORE cycle: load and process
i=2;j=1...256

3. LOAD-PROCESS-STORE cycle: load and process
i=3;j=1...256

Example C

for i:=1 to 1000
for j:=11t0 512

1. LOAD-PROCESS-STORE cycle: load and process
i=1;j=1...256
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2. LOAD-PROCESS-STORE cycle: load and process
i=1;j=257...512
3. LOAD-PROCESS-STORE cycle: load and process
i=2;j=1...256

It may be desirable for each configuration to be considered
to be atomiic, i.e., not interruptable. This may therefore solve
the problem of having to save the internal data of the PA and
the internal status in the event of an interruption. During
execution of a configuration, the particular status may be
written to the RAM-PAFEs together with the data.

However, with this method, it may be that initially no
statement is possible regarding the runtime behavior of a
configuration. This may result in disadvantages with respect
to the realtime capability and the task change performance.

Therefore, in an embodiment of the present invention, the
runtime of each configuration may be limited to a certain
maximum number of clock pulses. Any possible disadvan-
tage of this embodiment may be disregarded because typi-
cally an upper limit is already set by the size of the RAM-
PAFEs and the associated data volume. Logically, the size of
the RAM-PAEs may correspond to the maximum number of
data processing clock pulses of a configuration, so that a
typical configuration is limited to a few hundred to one thou-
sand clock pulses. Multithreading/hyperthreading and real-
time methods may be implemented together with a VPU by
this restriction.

The runtime of configurations may be monitored by a
tracking counter and/or watchdog, e.g., a counter (which runs
with the clock pulse or some other signal). If the time is
exceeded, the watchdog may trigger an interrupt and/or trap
which may be understood and treated like an “illegal opcode™
trap of processors.

Alternatively, a restriction may be introduced to reduce
reconfiguration processes and to increase performance:

Running configurations may retrigger the watchdog and
may thus proceed more slowly without having to be changed.
A retrigger may be allowed, e.g., only if the algorithm has
reached a “safe” state (synchronization point in time) at
which all data and states have been written to the RAM-PAEs
and an interruption is allowed according to the algorithm. A
disadvantage of this may be that a configuration could run in
a deadlock within the scope of its data processing but may
continue to retrigger the watchdog properly and it may be that
it thus does not terminate the configuration.

A blockade of the VPU resource by such a zombie con-
figuration may be prevented by the fact that retriggering of the
watchdog may be suppressed by a task change and thus the
configuration may be changed at the next synchronization
point in time or after a predetermined number of synchroni-
zation times. Then although the task having the zombie is no
longer terminated, the overall system may continue to run
properly.

Optionally multithreading and/or hyperthreading may be
introduced as an additional method for the machine model
and/or the processor. All VPU routines, i.e., their configura-
tions, are preferably considered then as a separate thread.
With a coupling to the processor of the VPU as the arithmetic
unit, the VPU may be considered as a resource for the threads.
The scheduler implemented for multithreading according to
the related art (see also P 42 21 278.2-09) may automatically
distribute threads programmed for VPUs (VPU threads) to
them. In other words, the scheduler may automatically dis-
tribute the different tasks within the processor.

This may result in another level of parallelism. Both pure
processor threads and VPU threads may be processed in par-
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allel and may be managed automatically by the scheduler
without any particular additional measures.

This method may be particularly efficient when the com-
piler breaks down programs into multiple threads that are
processable in parallel, as is usually possible, thereby divid-
ing all VPU program sections into individual VPU threads.

To support a rapid task change, in particular including
realtime systems, multiple VPU data paths, each of which is
considered as its own independent resource, may be imple-
mented. At the same time, this may also increase the degree of
parallelism because multiple VPU data paths may be used in
parallel.

To support realtime systems in particular, certain VPU
resources may be reserved for interrupt routines so that for a
response to an incoming interrupt it is not necessary to wait
for termination of the atomic non-interruptable configura-
tions. Alternatively, VPU resources may be blocked for inter-
rupt routines, i.e., no interrupt routine is able to use a VPU
resource and/or contain a corresponding thread. Thus rapid
interrupt response times may be also ensured. Since typically
no VPU-performing algorithms occur within interrupt rou-
tines, or only very few, this method may be desirable. If the
interrupt results in a task change, the VPU resource may be
terminated in the meantime. Sufficient time is usually avail-
able within the context of the task change.

One problem occurring in task changes may be that it may
be required for the LOAD-PROCESS-STORE cycle
described previously to be interrupted without having to write
all data and/or status information from the RAM-PAEs to the
external RAMS and/or peripherals.

According to ordinary processors (e.g., RISC LOAD/
STORE machines), a PUSH configuration is now introduced;
it may be inserted between the configurations of the LOAD-
PROCESS-STORE cycle, e.g., in a task change. PUSH may
save the internal memory contents of the RAM-PAEs to exter-
nal memories, e.g., to a stack; external here means, for
example, external to the PA or a PA part but it may also refer
to peripherals, etc. To this extent PUSH may thus correspond
to the method of traditional processors in its principles. After
execution of the PUSH operation, the task may be changed,
i.e., the instantaneous LOAD-PROCESS-STORE cycle may
be terminated and a LOAD-PROCESS-STORE cycle of the
next task may be executed. The terminated LOAD-PRO-
CESS-STORE cycle may be incremented again after a sub-
sequent task change to the corresponding task in the configu-
ration (KATS) which may follow after the last configuration
implemented. To do so, a POP configuration may be imple-
mented before the KATS configuration and thus the POP
configuration in turn may load the data for the RAM-PAEs
from the external memories, e.g., the stack, according to the
methods used with known processors.

An expanded version of the RAM-PAEs according to DE
196 54 595.1-53 and DE 199 26 538.0 may be particularly
efficient for this purpose; in this version the RAM-PAEs may
have direct access to a cache (DE 199 26 538.0) (case A) or
may be regarded as special slices within a cache and/or may
be cached directly (DE 196 54 595.1-53) (case B).

Due to the direct access of the RAM-PAEs to a cache or
direct implementation of the RAM-PAEs in a cache, the
memory contents may be exchanged rapidly and easily in a
task change.

Case A: the RAM-PAE contents may be written to the
cache and loaded again out of it, e.g., via a separate and
independent bus. A cache controller according to the related
art may be responsible for managing the cache. Only the
RAM-PAEs that have been modified in comparison with the
original content need be written into the cache. A “dirty” flag
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for the RAM-PAEs may be inserted here, indicating whether
a RAM-PAE has been written and modified. It should be
pointed out that corresponding hardware means may be pro-
vided for implementation here.

Case B: the RAM-PAEs may be directly in the cache and
may be labeled there as special memory locations which are
not affected by the normal data transfers between processor
and memory. In a task change, other cache sections may be
referenced. Modified RAM-PAEs may be labeled as dirty.
Management of the cache may be handled by the cache con-
troller.

In application of cases A and/or B, a write-through method
may yield considerable advantages in terms of speed, depend-
ing on the application. The data of the RAM-PAEs and/or
caches may be written through directly to the external
memory with each write access by the VPU. Thus the RAM-
PAE and/or the cache content may remain clean at any point
in time with regard to the external memory (and/or cache).
This may eliminate the need for updating the RAM-PAEs
with respect to the cache and/or the cache with respect to the
external memory with each task change.

PUSH and POP configurations may be omitted when using
such methods because the data transfers for the context
switches are executed by the hardware.

By restricting the runtime of configurations and supporting
rapid task changes, the realtime capability of a VPU-sup-
ported processor may be ensured.

The LOAD-PROCESS-STORE cycle may allow a particu-
larly efficient method for debugging the program code
according to DE 101 42 904.5. If each configuration is con-
sidered to be atomic and thus uninterruptible, then the data
and/or states relevant for debugging may be essentially in the
RAM-PAEs after the end of processing of a configuration. It
may thus only be required that the debugger access the RAM-
PAEs to obtain all the essential data and/or states.

Thus the granularity of a configuration may be adequately
debuggable. If details regarding the process configurations
must be debugged, according to DE 101 42 904.5 a mixed
mode debugger is used with which the RAM-PAE contents
are read before and after a configuration and the configuration
itself is checked by a simulator which simulates processing of
the configuration.

If the simulation results do not match the memory contents
of the RAM-PAEs after the processing of the configuration
processed on the VPU, then the simulator might not be con-
sistent with the hardware and there may be either a hardware
defect or a simulator error which must then be checked by the
manufacturer of the hardware and/or the simulation software.

It should be pointed out in particular that the limitation of
the runtime of a configuration to the maximum number of
cycles may promote the use of mixed-mode debuggers
because then only a relatively small number of cycles need be
simulated.

Due to the method of atomic configurations described here,
the setting of breakpoints may be simplified because moni-
toring of data after the occurrence of a breakpoint condition is
necessary only on the RAM-PAEs, so that it may be that only
they need be equipped with breakpoint registers and com-
parators.

In an example embodiment of hardware according to the
present invention, the PAEs may have sequencers according
to

DE 196 51 075.9-53 (FIGS. 17, 18, 21) and/or DE 199 26
538.0, with entries into the configuration stack (see DE 197
04 728.9, DE 100 28 397.7, DE 102 12 621.6-53) being used
as code memories for a sequencer, for example.
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It has been recognized that such sequencers are usually
very difficult for compilers to control and use. Therefore, it
may be desirable for pseudocodes to be made available for
these sequencers with compiler-generated assembler instruc-
tions being mapped on them. For example, it may be ineffi-
cient to provide opcodes for division, roots, exponents, geo-
metric operations, complex mathematics, floating point
instructions, etc. in the hardware. Therefore, such instruc-
tions may be implemented as multicyclic sequencer routines,
with the compiler instantiating such macros by the assembler
as needed.

Sequencers are particularly interesting, for example, for
applications in which matrix computations must be per-
formed frequently. In these cases, complete matrix operations
such as a 2x2 matrix multiplication may be compiled as
macros and made available for the sequencers.

If in an example embodiment of the architecture, FPGA
units are implemented in the ALU-PAEs, then the compiler
may have the following option:

When logic operations occur within the program to be
translated by the compiler, e.g., &, |, >>, << etc., the compiler
may generate a logic function corresponding to the operation
for the FPGA units within the ALU-PAE. To this extent the
compiler may be able to ascertain that the function does not
have any time dependencies with respect to its input and
output data, and the insertion of register stages after the func-
tion may be omitted.

If'a time independence is not definitely ascertainable, then
registers may be configured into the FPGA unit according to
the function, resulting in a delay by one clock pulse and thus
triggering the synchronization.

On insertion of registers, the number of inserted register
stages per FPGA unit on configuration of the generated con-
figuration on the VPU may be written into a delay register
which may trigger the state machine of the PAE. The state
machine may therefore adapt the management of the hand-
shake protocols to the additionally occurring pipeline stage.

After a reset or a reconfiguration signal (e.g., Reconfig)
(see PACTOS, PACT16) the FPGA units may be switched to
neutral, i.e., they may allow the input data to pass through to
the output without modification. Thus, it may be that configu-
ration information is not required for unused FPGA units.

All the PACT patent applications cited here are herewith
incorporated fully for disclosure purposes.

Any other embodiments and combinations of the inven-
tions referenced here are possible and will be obvious to those
skilled in the art, and those skilled in the art can appreciate
from the foregoing description that the present invention can
be implemented in a variety of forms. Therefore, while the
embodiments of this invention have been described in con-
nection with particular examples thereof, the true scope of the
embodiments of the invention should not be so limited since
other modifications will become apparent to the skilled prac-
titioner upon a study of the drawings, specification, and fol-
lowing claims.

Instruction datapaths of modern microprocessors are con-
strained by certain limitations because they use static instruc-
tion sets driven by the traditional von Neumann or Harvard
architectural principles. These limitations may be avoided via
a dynamic reconfigurable processor datapath extension
achieved by integrating traditional static datapaths with the
coarse-grain dynamic reconfigurable XPP architecture.
Therefore, a loosely asynchronous coupling mechanism of
the corresponding instruction datapath or datapath units has
been developed and integrated onto a CMOS 0.13 pm stan-
dard cell technology from UMC. In embodiments of the
present invention, the SPARC compatible LEON RISC pro-
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cessor may be used, with its static pipelined instruction data-
path extended to be configured and personalized for specific
applications. This compiler-compatible instruction set exten-
sion allows various and efficient uses, e.g., in streaming appli-
cation domains like MPEG-4, digital filters, mobile commu-
nication modulation, etc.

Discussed below is a coupling technique by flexible dual-
clock FIFO interfaces that allows asynchronous concurrency
of'the additionally configured compound instructions, which
are integrated into the programming and compilation envi-
ronment of the LEON processor, and that allows adaption of
the frequency of the configured XPP datapath, dependent on
actual performance requirements, e.g., for avoiding unneeded
cycles and reducing power consumption.

The coupling technique of embodiments of the present
invention discussed below combines the flexibility of a gen-
eral purpose microprocessor with the performance and power
consumption of coarse-grain reconfigurable datapath struc-
tures, nearly comparable to ASIC performance. Two pro-
gramming and computing paradigms (control-driven von
Neumann and transport-triggered XPP) are unified within
one hybrid architecture with the option of two clock domains.
The ability to reconfigure the transport-triggered XPP makes
the system independent from standards or specific applica-
tions. This concept creates potential to develop multi-stan-
dard communication devices like software radios by using
one extended processor architecture with adapted program-
ming and compilation tools. Thus, new standards can be
easily implemented through software updates. The system is
scalable during design time through the scalable array-struc-
ture of the used XPP extension. This extends the range of
suitable applications from products with less multimedia
functions to complex high performance systems.

LEON RISC Microprocessor

Embodiments of the present invention may be imple-
mented using a 32-bit SPARC V8 compatible LEON micro-
processor. See SPARC International Inc., The SPARC Archi-
tecture Manual, Version 8, at http://www.sparc.com; Jiri
Gaisler, The LEON Processor User’s Manual, at http://ww-
w.gaisler.com. This microprocessor is a synthesisable, freely
available VHDL model which has a load/store architecture
and has a five stages pipeline implementation with separated
instruction and data caches.

FIG. 8 illustrates components of a LEON architecture. The
LEON may be provided with a full implementation of an
AMBA 2.0 AHB and APB on-chip bus (1000, 1002), a hard-
ware multiplier and divider, programmable 8/16/32-bit
memory controller 1005 for external PROM, static RAM and
SDRAM, and several on-chip peripherals such as timers
1010, UARTs 1012, an interrupt controller 1014, and a 16-bit
1/O port 1016. A simple power down mode may be imple-
mented as well.

LEON is developed by the European Space Agency (ESA)
for future space missions. The performance of LEON is close
to an ARM 19 series but does not have a memory management
unit (MMU) implementation, which limits the use to single
memory space applications. FIG. 9 shows the pipelined data-
path structure of the LEON integer unit.
eXtreme Processing Platform—XPP

Embodiments of the present invention may be imple-
mented using the XPP architecture. Regarding the XPP archi-
tecture, see http://www.pactcorp.com; “The XPP Communi-
cation System,” supra; and V. Baumgarte et al., “A Self-
Reconfigurable Data Processing Architecture,” The 1st Intl.
Conference of Engineering of Reconfigurable Systems and
Algorithms (ERSA °01), Las Vegas, Nev. (June 2001). The
XPP architecture is based on a hierarchical array of coarse-
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grain, adaptive computing elements called Processing Array
Elements (PAEs) and a packet-oriented communication net-
work. The strength of the XPP technology originates from the
combination of array processing with unique, powerful run-
time reconfiguration mechanisms. Since configuration con-
trol is distributed over a Configuration Manager (CM)
embedded in the array, PAEs can be configured rapidly in
parallel while neighboring PAEs are processing data. Entire
applications can be configured and run independently on
different parts of the array. Reconfiguration may be triggered
externally or even by special event signals originating within
the array, enabling self-reconfiguring designs. By utilizing
protocols implemented in hardware, data and event packets
may be used to process, generate, decompose and merge
streams of data.

The XPP has some similarities with other coarse-grain
reconfigurable architectures like the KressArray (see R.
Hartenstein et al., supra) or Raw Machines (see E. Waingold
et al., supra), which are specifically designed for stream-
based applications. XPP’s main distinguishing features are its
automatic packet-handling mechanisms and its sophisticated
hierarchical configuration protocols for runtime and self
reconfiguration.

Array Structure

A CM may include a state machine and internal RAM for
configuration caching. The PAE itself (see top right-hand side
of FIG. 10) may include a configuration bus which connects
the CM with PAEs and other configurable objects. Horizontal
busses may carry data and events. They can be segmented by
configurable switch-objects, and can be connected to PAEs
and special I/O objects at the periphery of the device.

A PAE is a collection of PAE objects. FIG. 10 illustrates
components of a typical PAE, which may include a BREG
object (back registers) 1100 and an FREG object (forward
registers) 1102, which are used for vertical routing, as well as
an ALU object 1104 which performs the actual computations.
The ALU 1104 may perform common fixed-point arithmeti-
cal and logical operations as well as several special three
input opcodes, such as multiply-add, sort, and counters.
Events generated by ALU objects depend on ALU results or
exceptions, very similar to the state flags of a conventional
microprocessor. A counter, e.g., generates a special event
only after it has terminated. How these events are used is
discussed below. Another PAE object implemented in the
XPP is a memory object which can be used in FIFO mode or
as RAM for lookup tables, intermediate results, etc. However,
any PAE object functionality can be included in the XPP
architecture.

Packet Handling and Synchronization

PAE objects, as defined above, may communicate via a
packet-oriented network. Two types of packets may be sent
through the array: data packets and event packets. Data pack-
ets have a uniform bit width specific to the device type. In
normal operation mode, PAE objects are self-synchronizing.
An operation is performed as soon as all necessary data input
packets are available. The results are forwarded as soon as
they are available, provided the previous results have been
used. Thus, it is possible to map a signal-flow graph directly
to ALU objects. Event packets are one bit wide. They transmit
state information which controls ALU execution and packet
generation.

Configuration

Every PAE stores locally its current configuration state,
i.e., if it is part of a configuration or not (states “configured”
or “free”). Once a PAE is configured, it changes its state to
“configured.” This prevents the CM from reconfiguring a PAE
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which is still used by another application. The CM caches the
configuration data in its internal RAM until the required PAEs
become available.

While loading a configuration, all PAEs start to compute
their part of the application as soon as they are in state “con-
figured.” Partially configured applications are able to process
data without loss of packets. This concurrency of configura-
tion and computation hides configuration latency.

XPP Application Mapping

The NML language, a PACT proprietary structural lan-
guage with reconfiguration primitives, was developed by
PACT to map applications to the XPP array. It gives the
programmer direct access to all hardware features.

In NML, configurations consist of modules which are
specified as in a structural hardware description language,
similar to, for example, structural VHDL. PAE objects are
explicitly allocated, optionally placed, and their connections
specified. Hierarchical modules allow component reuse,
especially for repetitive layouts. Additionally, NML includes
statements to support configuration handling. A complete
NML application program may include one or more modules,
a sequence of initially configured modules, differential
changes, and statements which map event signals to configu-
ration and prefetch requests. Thus, configuration handling is
an explicit part of the application program.

XPP-based architectures and development tools, such as
the PACT XPP Development Suite (XDS) are discussed in
detail at http://www.pactcorp.com.

LEON Instruction Datapath Extension

LEON and XPP should be able to communicate with each
other in a simple and high performance manner. While the
XPP is a dataflow orientated device, the LEON is a general
purpose processor, suitable for handling control flow. See, for
example, The SPARC Architecture Manual, supra; Jiri
Gaisler, supra. Therefore, LEON may be used for system
control. To do this, the XPP is integrated into the datapath of
the LEON integer unit, which is able to control the XPP. FIG.
11 is a diagram that illustrates this extended datapath.

Due to unpredictable operation time of the XPP algorithm,
integration of XPP into LEON data-path is done in a loosely-
coupled way. Thus, the XPP array can operate independently
of the LEON, which is able to control and reconfigure the
XPP during runtime. Since the configuration of XPP is
handled by LEON, the CM 1106 of the XPP is unnecessary
and can be left out of the XPP array. The configuration codes
are stored in the LEON RAM. LEON transfers the needed
configuration from its system RAM into the XPP and creates
the needed algorithm on the array.

To enable a maximum of independence of XPP from
LEON, all ports of the XPP—input ports as well as output
ports—are buffered using dual clock FIFOs. Dual-clocked
FIFOs are implemented into the IO-Ports between LEON and
XPP. To transmit data to the extended XPP-based datapath,
the data are passed through an IO-Port as shown in FIG. 12. In
addition to the FIFO, the I0-Ports include logic to generate
handshake signals and an interrupt request signal. The 10-
Port for receiving data from XPP is similar to FIG. 12 except
with a reversed direction of the data signals. This enables XPP
to perform completely independently of LEON as long as
there are input data available in the input port FIFOs and free
space for result date in the output port FIFOs. There are a
number of additional features implemented in the LEON
pipeline to control the data transfer between LEON and XPP.

When LEON tries to write to an TO-Port containing a full
FIFO or read from an 10-Port containing an empty FIFO, a
trap is generated. This trap can be handled through a trap
handler. A further mechanism, e.g., pipeline-holding, may be
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implemented to allow LEON to hold the pipeline and wait for
free FIFO space during XPP write access or wait for a valid
FIFO value during XPP read access. When using pipeline-
holding, the software developer has to avoid reading from an
10-Port with an empty FIFO while the XPP, or the XPP input
10-Ports, includes no data to produce output. In this case a
deadlock will occur requiring a reset of the complete system.

XPP can generate interrupts for the LEON when trying to
read a value from an empty FIFO port or to write a value to a
full FIFO port. The occurrence of interrupts indicates that the
XPP array cannot process the next step because it has either
no input values or it cannot output the result value. The
interrupts generated by the XPP are maskable.

The interface provides information about the FIFOs.
LEON can read the number of valid values that are in the
FIFO.

FIG. 13 illustrates an extended LEON instruction pipeline.
The interface, shown in FIG. 13, to the XPP appears to the
LEON as a set of special registers. These XPP registers can be
divided into a communication register category and a status
register category.

For data exchange, the XPP communication registers are
used. Since XPP provides three different types of communi-
cation ports, there are also three types of communication
registers each type is split into an input part and an output part.
Communication Registers

The data for the process are accessed through XPP data
registers. The number of data input and data output ports, as
well as the data bit-width depends on the implemented XPP
array.

XPP can generate and consume events. Events are one bit
signals. The number of input events and output events also
depends on the implemented XPP array.

Configuration of the XPP is done through the XPP con-
figuration register. LEON reads the required configuration
value from a file stored in its system RAM and writes it to the
XPP configuration register.

Status Resisters

There are a number of XPP status registers implemented to
control the behavior and get status information of the inter-
face. Switching between the usage of trap handling and pipe-
line holding can be done in the hold register. An XPP clock
register includes a clock frequency ratio between LEON and
XPP. By writing to this register, LEON software can set the
XPP clock relative to the LEON clock. This allows adaptation
of'the XPP clock frequency to the required XPP performance
and consequently allows for influencing the power consump-
tion of the system. Writing zero to the XPP clock register
turns off the XPP. There is also a status register for every FIFO
including the number of valid values actually available in the
FIFO.

This status registers provide a high degree of flexibility in
communication between LEON and XPP and enables differ-
ent communication modes.

Modes

If there is only one application running on the system at a
particular time, software may be developed in pipeline-hold
mode. In this instance, LEON initiates data read or write from
or to XPP. If there is no value to read or no value to write,
LEON pipeline will be stopped until read or write is possible.
This can be used to reduce power consumption of the LEON
part.

In interrupt mode, XPP can influence the LEON program
flow. Thus, the IO-Ports generate an interrupt depending on
the actual number of values available in the FIFO. The com-
munication between LEON and XPP is via interrupt service
routines.
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Polling mode is a way to access the XPP. Initiated by a
timer event, LEON reads XPP ports including data and writes
to XPP ports including free FIFO space. Between these
phases, LEON can compute other calculations.

It is possible to switch between these strategies anytime
within one application.

A conventional XPP includes a configuration manager to
handle configuration and reconfiguration of the array. How-
ever, in combination with the LEON, the configuration man-
ager is dispensable because the configuration as well as any
reconfiguration is controlled by the LEON through the XPP
configuration register. All XPP configurations used for an
application are stored in the LEON’s system RAM.

Tool and Compiler Integration

To make the new XPP registers accessible through soft-
ware, the LEON’s SPARC 8 instruction set (see The SPARC
Architecture Manual, supra) is extended by a new subset of
instructions. These instructions are based on the SPARC
instruction format, but do not conform to the SPARC V8
standard. Corresponding to the SPARC conventions of aload/
store architecture, the instruction subset can be divided into
two categories. Load/store instructions can exchange data
between the LEON memory and the XPP communication
registers. The number of cycles per instruction is similar to
the standard load/store instructions of the LEON. Read/write
instructions are used for communications between LEON
registers. Since the LEON register-set is extended by the XPP
registers, the read/write instructions are also extended to
access XPP registers. Status registers can only be accessed
with read/write instructions. Execution of arithmetic instruc-
tions on XPP registers are not possible. Values have to be
written to standard LEON registers before they can be targets
of arithmetic operations.

The complete system can still execute any SPARC V8
compatible code. Doing this, the XPP is completely unused.

The LEON is provided with the LECCS cross compiler
system (see LEON/ERC32 Crass Compilation System
(LECCS) at http://www.gaisler.com/cms4-5-3/
index.php?option=com_content&task=view&id=62&
Itemid=149) under the terms of LGPL. This system includes
modified-versions of the binutils 2.11 and gec 2.95.2. To
make the new instruction subset available to software devel-
opers, the assembler of the binutils has been extended by a
number of instructions according to the implemented instruc-
tion subset. The new instructions have the same mnemonic as
the regular SPARC V8 load, store, read, and write instruc-
tions. Only the new XPP registers have to be used as a source
or target operand. Since the modifications of LECCS are
straightforward extensions, the cross compiler system is
backward compatible to the original version. The availability
of the source code of LECCS has allowed for extending the
tools by the new XPP operations in the described way.

The development of the XPP algorithms have to be done
with separate tools, provided by PACT Corp.

Application Results

As a first analysis application, an inverse Discrete Cosine
Transform (DCT) applied to an 8x8 pixel block was imple-
mented. For all simulations, a 2.50 MHz clock frequency for
the LEON processor and a 50 MHZ clock frequency for XPP
was used. The usage of XPP accelerates the computation of
the iDCT by about a factor of four, depending on the com-
munication mode. However, XPP has to be configured before
computing the iDCT on it. The following table shows the
configuration time for this algorithm.
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LEON
LEON LEON with
with with XPp
XPP XPp in
LEON in IRQ in Poll Hold 5
alone Mode Mode Mode
Config- — 71.308 ns 84.364 ns 77.976 ns
uration 17.827 cycles  21.091 cycles 19.494 cycles
of XPP 14.672 ns 3.272 ns 3.872 ns 3.568 ns
2D 3.668 cycles 818 cycles 968 cycles 892 cyclego
iDCT
(8 x 8)

As shown in FIG. 14, the benefit brought by XPP rises with
the number of iDCT blocks computed by it before reconfigu-
ration. Accordingly, the number of reconfigurations during
complex algorithms should be minimized.

A first complex application implemented on the system is
MPEG-4 decoding. The optimization of the algorithm parti-
tioning on LEON and XPP is still in progress. FIG. 15 is a
block diagram of the MPEG-4 decoding algorithm. Frames
with 320x240 pixels were decoded. LEON, by using SPARC
V8 standard instructions, decodes one frame in 23.46 sec-
onds. In a first implementation of MPEG-4 using the XPP,
only the iDCT is computed by XPP. The rest of the MPEG-4
decoding is still done with LEON. With the help of XPP, one
frame is decoded in 17.98 s. This is a performance boost of
more then twenty percent. Since the XPP performance gain
by accelerating the iDCT algorithm only is very low at the
moment, we work on XPP implementations of Huffmann-
decoding, dequantization, and prediction decoding. So the
performance boost of this implementation against the standa-
lone LEON will be increased.

Hardware Design Parameter Changes

For integration of the XPP core as a functional unit into a
standard RISC core, some system parameters may be recon-
sidered as follows:

Pipelining/Concurrency/Synchronicity

RISC instructions of totally different type (L.d/St, ALU,
MuL/Div/IMAC, FPALU, FPMul, etc.) may be executed in
separate specialized functional units to increase the fraction
of'silicon that is busy on average. Such functional unit sepa-
ration has led to superscalar RISC designs that exploit higher
levels of parallelism.

Each functional unit of a RISC core may be highly pipe-
lined to improve throughput. Pipelining may overlap the
execution of several instructions by splitting them into unre-
lated phases, which may be executed in different stages of the
pipeline. Thus, different stages of consecutive instructions
can be executed in parallel with each stage taking much less
time to execute. This may allow higher core frequencies.

With an approximate subdivision of the pipelines of all
functional units into sub-operations of the same size (execu-
tion time), these functional units/pipelines may execute in a
highly synchronous manner with complex floating point
pipelines being the exception.

Since the XPP core uses data flow computation, it is pipe-
lined by design. However, a single configuration usually
implements a loop of the application, so the configuration
remains active for many cycles, unlike the instructions in
every other functional unit, which typically execute for one or
two cycles at most. Therefore, it is still worthwhile to consider
the separation of several phases, (e.g., Ld/Ex/Store), of an
XPP configuration, (i.e., an XPP instruction), into several
functional units to improve concurrency via pipelining on this
coarser scale. This also may improve throughput and
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response time in conjunction with multi tasking operations
and implementations of simultaneous multithreading (SMT).

The multi cycle execution time may also forbid a strongly
synchronous execution scheme and may rather lead to an
asynchronous scheme, e.g., like for floating point square root
units. This in turn may necessitate the existence of explicit
synchronization instructions.

Core Frequency/Memory Hierarchy

As a functional unit, the XPP’s operating frequency may
either be half of the core frequency or equal to the core
frequency of the RISC. Almost every RISC core currently on
the market exceeds its memory bus frequency with its core
frequency by a larger factor. Therefore, caches are employed,
forming what is commonly called the memory hierarchy,
where each layer of cache is larger but slower than its prede-
Cessors.

This memory hierarchy does not help to speed up compu-
tations which shuffle large amounts of data, with little or no
data reuse. These computations are called “bounded by
memory bandwidth.” However, other types of computations
with more data locality (another term for data reuse) may gain
performance as long as they fit into one of the upper layers of
the memory hierarchy. This is the class of applications that
gains the highest speedups when a memory hierarchy is intro-
duced.

Classical vectorization can be used to transform memory-
bounded algorithms, with a data set too big to fit into the upper
layers of the memory hierarchy. Rewriting the code to reuse
smaller data sets sooner exposes memory reuse on a smaller
scale. As the new data set size is chosen to fit into the caches
of the memory hierarchy, the algorithm is not memory
bounded anymore, yielding significant speed-ups.
Software/Multitasking Operating Systems

As the XPP is introduced into a RISC core, the changed
environment—higher frequency and the memory hierar-
chy—may necessitate, not only reconsideration of hardware
design parameters, but also a reevaluation of the software
environment.

Memory Hierarchy

The introduction of a memory hierarchy may enhance the
set of applications that can be implemented efficiently. So far,
the XPP has mostly been used for algorithms that read their
data sets in a linear manner, applying some calculations in a
pipelined fashion and writing the data back to memory. As
long as all of the computation fits into the XPP array, these
algorithms are memory bounded. Typical applications are
filtering and audio signal processing in general.

But there is another set of algorithms that have even higher
computational complexity and higher memory bandwidth
requirements. Examples are picture and video processing,
where a second and third dimension of data coherence opens
up. This coherence is, e.g., exploited by picture and video
compression algorithms that scan pictures in both dimensions
to find similarities, even searching consecutive pictures of a
video stream for analogies. These algorithms have a much
higher algorithmic complexity as well as higher memory
requirements. Yet they are data local, either by design or by
transformation, thus efficiently exploiting the memory hier-
archy and the higher clock frequencies of processors with
memory hierarchies.

Multi Tasking

The introduction into a standard RISC core makes it nec-
essary to understand and support the needs of a multitasking
operating system, as standard RISC processors are usually
operated in multitasking environments. With multitasking,
the operating system may switch the executed application on
a regular basis, thus simulating concurrent execution of sev-
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eral applications (tasks). To switch tasks, the operating sys-
tem may have to save the state, (e.g., the contents of all
registers), of the running task and then reload the state of
another task. Hence, it may be necessary to determine what
the state of the processor is, and to keep it as small as possible
to allow efficient context switches.

Modern microprocessors gain their performance from
multiple specialized and deeply pipelined functional units
and high memory hierarchies, enabling high core frequen-
cies. But high memory hierarchies mean that there is a high
penalty for cache misses due to the difference between core
and memory frequency. Many core cycles may pass until the
values are finally available from memory. Deep pipelines
incur pipeline stalls due to data dependencies as well as
branch penalties for mispredicted conditional branches. Spe-
cialized functional units like floating point units idle for inte-
ger-only programs. For these reasons, average functional unit
utilization is much too low.

The newest development with RISC processors, Simulta-
neous MultiThreading (SMT), adds hardware support for a
finer granularity (instruction/functional unit level) switching
of tasks, exposing more than one independent instruction
stream to be executed. Thus, whenever one instruction stream
stalls or doesn’t utilize all functional units, the other one can
jump in. This improves functional unit utilization for today’s
processors.

With SMT, the task (process) switching is done in hard-
ware, so the processor state has to be duplicated in hardware.
So again it is most efficient to keep the state as small as
possible. For the combination of the PACT XPP and a stan-
dard RISC processor, SMT may be very beneficial, since the
XPP configurations may execute longer than the average
RISC instruction. Thus, another task can utilize the other
functional units, while a configuration is running. On the
other hand, not every task will utilize the XPP, so while one
such non-XPP task is running, another one will be able to use
the XPP core.

Communication Between the RISC Core and the XPP Core

The following are several possible embodiments that are

each a possible hardware implementation for accessing
memory.
Streaming

Since streaming can only support

(number_of_IO_ports*width_of 1O_port) bits per cycle, it
may be well suited for only small XPP arrays with heavily
pipelined configurations that feature few inputs and outputs.
As the pipelines take a long time to fill and empty while the
running time of a configuration is limited (as described herein
with respect to “context switches™), this type of communica-
tion does not scale well to bigger XPP arrays and XPP fre-
quencies near the RISC core frequency.

Streaming from the RISC Core

In this setup, the RISC may supply the XPP array with the
streaming data. Since the RISC core may have to execute
several instructions to compute addresses and load an item
from memory, this setup is only suited if the XPP core is
reading data with a frequency much lower than the RISC core
frequency.

Streaming Via DMA

In this mode the RISC core only initializes a DMA channel
which may then supply the data items to the streaming port of
the XPP core.

Shared Memory (Main Memory)

In this configuration, the XPP array configuration may use
anumber of PAEs to generate an address that is used to access
main memory through the IO ports. As the number of 1O ports
may be very limited, this approach may suffer from the same
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limitations as the previous one, although for larger XPP
arrays there is less impact of using PAEs for address genera-
tion. However, this approach may still be useful for loading
values from very sparse vectors.

Shared Memory (IRAM)

This data access mechanism uses the IRAM elements to
store data for local computations. The IRAMs can either be
viewed as vector registers or as local copies of main memory.

The following are several ways in which to fill the IRAMs
with data:

1. The IRAMs may be loaded in advance by a separate

configuration using streaming.

This method can be implemented with the current XPP
architecture. The IRAMs act as vector registers. As
explicated above, this may limit the performance of
the XPP array, especially as the IRAMs will always be
part of the externally visible state and hence must be
saved and restored on context switches.

2. The IRAMs may be loaded in advance by separate load-
instructions.

This is similar to the first method. Load-instructions may
be implemented in hardware which loads the data into
the IRAMs. The load-instructions can be viewed as a
hard coded load configuration. Therefore, configura-
tion reloads may be reduced. Additionally, the special
load instructions may use a wider interface to the
memory hierarchy. Therefore, a more efficient
method than streaming can be used.

3. The IRAMs can be loaded by a “burst preload from
memory” instruction of the cache controller. No con-
figuration or load-instruction is needed on the XPP. The
IRAM load may be implemented in the cache controller
and triggered by the RISC processor. But the IRAMs
may still act as vector registers and may be therefore
included in the externally visible state.

4. The best mode, however, may be a combination of the
previous solutions with the extension of a cache:

A preload instruction may map a specific memory area
defined by starting address and size to an IRAM. This
may trigger a (delayed, low priority) burst load from
the memory hierarchy (cache). After all IRAMs are
mapped, the next configuration can be activated. The
activation may incur a wait until all burst loads are
completed. However, if the preload instructions are
issued long enough in advance and no interrupt or task
switch destroys cache locality, the wait will not con-
sume any time.

To specify a memory block as output-only IRAM, a
“preload clean” instruction may be used, which may
avoid loading data from memory. The “preload clean”
instruction just indicates the IRAM for write back.

A synchronization instruction may be needed to make
sure that the content of a specific memory area, which
is cached in IRAM, is written back to the memory
hierarchy. This can be done globally (full write back),
or selectively by specifying the memory area, which
will be accessed.

State of the XPP Core

As discussed above, the size of the state may be crucial for
the efficiency of context switches. However, although the size
of'the state may be fixed for the XPP core, whether or not they
have to be saved may depend on the declaration of the various
state elements.

The state of the XPP core can be classified as:

1. Read only (instruction data)

configuration data, consisting of PAE configuration and

routing configuration data; and
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2. Read-Write

the contents of the data registers and latches of the PAEs,

which are driven onto the busses

the contents of the IRAM elements.

Limiting Memory Traffic

There are several possibilities to limit the amount of
memory traffic during context switches, as follows:
do not Save Read-Only Data

This may avoid storing configuration data, since configu-
ration data is read only. The current configuration may be
simply overwritten by the new one.

Save Less Data

If a configuration is defined to be uninterruptible (non
pre-emptive), all of the local state on the busses and in the
PAFEs can be declared as scratch. This means that every con-
figuration may get its input data from the IRAMs and may
write its output data to the IRAMs. So after the configuration
has finished, all information in the PAEs and on the buses may
be redundant or invalid and saving of the information might
not be required.

Save Modified Data Only

To reduce the amount of R/W data which has to be saved,
the method may keep track of the modification state of the
different entities. This may incur a silicon area penalty for the
additional “dirty” bits.

Use Caching to Reduce the Memory Traffic

The configuration manager may handle manual preloading
of configurations. Preloading may help in parallelizing the
memory transfers with other computations during the task
switch. This cache can also reduce the memory traffic for
frequent context switches, provided that a Least Recently
Used (LRU) replacement strategy is implemented in addition
to the preload mechanism.

The IRAMs can be defined to be local cache copies of main
memory as discussed above under the heading “Shared
Memory (IRAM).” Then each IRAM may be associated with
a starting address and modification state information. The
IRAM memory cells may be replicated. An IRAM PAE may
contain an IRAM block with multiple IRAM instances. It
may be that only the starting addresses of the IRAMs have to
be saved and restored as context. The starting addresses for
the IRAMs of the current configuration select the IRAM
instances with identical addresses to be used.

If no address tag of an IRAM instance matches the address
of'the newly loaded context, the corresponding memory area
may be loaded to an empty IRAM instance.

If no empty IRAM instance is available, a clean (unmodi-
fied) instance may be declared empty (and hence it may be
required for it to be reloaded later on).

If no clean IRAM instance is available, a modified (dirty)
instance may be cleaned by writing its data back to main
memory. This may add a certain delay for the write back.

This delay can be avoided if a separate state machine
(cache controller) tries to clean inactive IRAM instances by
using unused memory cycles to write back the IRAM
instances’ contents.

Context Switches

Usually a processor is viewed as executing a single stream
of instructions. But today’s multi-tasking operating systems
support hundreds of tasks being executed on a single proces-
sor. This is achieved by switching contexts, where all, or at
least the most relevant parts, of the processor state which
belong to the current task—the task’s context—is exchanged
with the state of another task, that will be executed next.

There are three types of context switches: switching of
virtual processors with simultaneous multithreading (SMT,
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also known as HyperThreading), execution of an Interrupt
Service Routine (ISR), and a Task Switch.
SMT Virtual Processor Switch

This type of context switch may be executed without soft-
ware interaction, totally in hardware. Instructions of several
instruction streams are merged into a single instruction
stream to increase instruction level parallelism and improve
functional unit utilization. Hence, the processor state cannot
be stored to and reloaded from memory between instructions
from different instruction streams. For example, in an
instance of alternating instructions from two streams and
hundreds to thousands of cycles might be needed to write the
processor state to memory and read in another state.

Hence hardware designers have to replicate the internal
state for every virtual processor. Every instruction may be
executed within the context (on the state) of the virtual pro-
cessor whose program counter was used to fetch the instruc-
tion. By replicating the state, only the multiplexers, which
have to be inserted to select one of the different states, have to
be switched.

Thus the size of the state may also increase the silicon area
needed to implement SMT, so the size of the state may be
crucial for many design decisions.

Interrupt Service Routine

This type of context switch may be handled partially by
hardware and partially by software. It may be required for all
of the state modified by the ISR to be saved on entry and it
may be required for it to be restored on exit.

The part of the state which is destroyed by the jump to the
ISR may be saved by hardware, (e.g., the program counter). It
may be the ISR’s responsibility to save and restore the state of
all other resources, that are actually used within the ISR.

The more state information to be saved, the slower the
interrupt response time may be and the greater the perfor-
mance impact may be if external events trigger interrupts at a
high rate.

The execution model of the instructions may also affect the
tradeoff between short interrupt latencies and maximum
throughput. Throughput may be maximized ifthe instructions
in the pipeline are finished and the instructions of the ISR are
chained. This may adversely affect the interrupt latency. If,
however, the instructions are abandoned (pre-empted) in
favor of a short interrupt latency, it may be required for them
to be fetched again later, which may affect throughput. The
third possibility would be to save the internal state of the
instructions within the pipeline, but this may require too
much hardware effort. Usually this is not done.

Task Switch

This type of context switch may be executed totally in
software. It may be required for all of a task’s context (state)
to be saved to memory, and it may be required for the context
of'the new task to be reloaded. Since tasks are usually allowed
to use all of the processor’s resources to achieve top perfor-
mance, it may be required to save and restore all of the
processor state. If the amount of state is excessive, it may be
required for the rate of context switches to be decreased by
less frequent rescheduling, or a severe throughput degrada-
tion may result, as most of the time may be spent in saving and
restoring task contexts. This in turn may increase the response
time for the tasks.

A Load Store Architecture

In an example embodiment of the present invention, an
XPP integration may be provided as an asynchronously pipe-
lined functional unit for the RISC. An explicitly preloaded
cache may be provided for the IRAMs, on top of the memory
hierarchy existing within the RISC (as discussed above under
the heading “Shared Memory (IRAM).” Additionally a de-
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centralized explicitly preloaded configuration cache within
the PAE array may be employed to support preloading of
configurations and fast switching between configurations.

Since the IRAM content is an explicitly preloaded memory
area, a virtually unlimited number of such IRAMs can be
used. They may be identified by their memory address and
their size. The IRAM content may be explicitly preloaded by
the application. Caching may increase performance by reus-
ing data from the memory hierarchy. The cached operation
may also eliminate the need for explicit store instructions;
they may be handled implicitly by cache write back opera-
tions but can also be forced to synchronize with the RISC.

The pipeline stages of the XPP functional unit may be
Load, Execute, and Write Back (Store). The store may be
executed delayed as a cache write back. The pipeline stages
may execute in an asynchronous fashion, thus hiding the
variable delays from the cache preloads and the PAE array.

The XPP functional unit may be decoupled of the RISC by
a FIFO fed with the XPP instructions. At the head of this
FIFO, the XPP PAE may consume and execute the configu-
rations and the preloaded IRAMs. Synchronization of the
XPP and the RISC may be done explicitly by a synchroniza-
tion instruction.

Instructions

Embodiments of the present invention may require certain
instruction formats. Data types may be specified using a C
style prototype definition. The following are example instruc-
tion formats which may be required, all of which execute
asynchronously, except for an XPPSync instruction, which
can be used to force synchronization.

XPPPreloadConfig (void *ConfigurationStartAddress)

The configuration may be added to the preload FIFO to be
loaded into the configuration cache within the PAE array.

Note that speculative preloads is possible since successive
preload commands overwrite the previous.

The parameter is a pointer register of the RISC pointer
register file. The size is implicitly contained in the configu-
ration.

XPPPreload (int IRAM, void *StartAddress, int Size)

XPPPreloadClean (int IRAM, void *StartAddress, int

Size)

This instruction may specify the contents of the IRAM for
the next configuration execution. In fact, the memory area
may be added to the preload FIFO to be loaded into the
specified IRAM.

The first parameter may be the IRAM number. This may be
an immediate (constant) value.

The second parameter may be a pointer to the starting
address. This parameter may be provided in a pointer register
of the RISC pointer register file.

The third parameter may be the size in units of 32 bit words.
This may be an integer value. It may reside in a general
purpose register of the RISC’s integer register file.

The first variant may actually preload the data from
memory.

The second variant may be for write-only accesses. It may
skip the loading operation. Thus, it may be that no cache
misses can occur for this IRAM. Only the address and size are
defined. They are obviously needed for the write back opera-
tion of the IRAM cache.

Note that speculative preloads are possible since succes-
sive preload commands to the same IRAM overwrite each
other (if no configuration is executed in between). Thus, only
the last preload command may be actually effective when the
configuration is executed.
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XPPExecute ()

This instruction may execute the last preloaded configura-
tion with the last preloaded IRAM contents. Actually, a con-
figuration start command may be issued to the FIFO. Then the
FIFO may be advanced. This may mean that further preload
commands will specify the next configuration or parameters
for the next configuration.

Whenever a configuration finishes, the next one may be
consumed from the head ofthe FIFO; if its start command has
already been issued.

XPPSync (void *StartAddress, int Size)

This instruction may force write back operations for all
IRAMs that overlap the given memory area. If overlapping
IRAMs are still in use by a configuration or preloaded to be
used, this operation will block. Giving an address of NULL
(zero) and a size of MAX INT (bigger than the actual
memory), this instruction can also be used to wait until all
issued configurations finish.

A Basic Implementation

As shown in FIG. 16, the XPP core 102 may share a
memory hierarchy with the RISC core 112 using a special
cache controller 125-130.

FIG. 17 shows an IRAM and configuration cache control-
ler data structures and a usage example (instructions).

The preload-FIFOs in FIG. 17 may contain the addresses
and sizes for already issued IRAM preloads, exposing them to
the XPP cache controller. The FIFOs may have to be dupli-
cated for every virtual processor in an SMT environment.
“Tag” is the typical tag for a cache line containing starting
address, size, and state (empty/clean/dirty | in-use). The addi-
tional in-use state signals usage by the current configuration.
The cache controller cannot manipulate these IRAM
instances.

The execute configuration command may advance all pre-
load FIFOs, copying the old state to the newly created entry.
This way the following preloads may replace the previously
used IRAMs and configurations. If no preload is issued for an
IRAM before the configuration is executed, the preload of the
previous configuration may be retained. Therefore, it may be
that it is not necessary to repeat identical preloads for an
IRAM in consecutive configurations.

Each configuration’s execute command may have to be
delayed (stalled) until all necessary preloads are finished,
either explicitly by the use of a synchronization command or
implicitly by the cache controller. Hence the cache controller
(XPP Ld/St unit) 125 may have to handle the synchronization
and execute commands as well, actually starting the configu-
ration as soon as all data is ready. After the termination of the
configuration, dirty IRAMs may be written back to memory
as soon as possible if their content is not reused in the same
IRAM. Therefore the XPP PAE array (XPP core 102) and the
XPP cache controller 125 can be seen as a single unit since
they do not have different instruction streams. Rather, the
cache controller can be seen as the configuration fetch (CF),
operand fetch (OF) (IRAM preload) and write back (WB)
stage of the XPP pipeline, also triggering the execute stage
(EX) (PAE array). FIG. 18 shows the asynchronous pipeline
of the XPP 100.

Due to the long latencies, and their non-predictability
(cache misses, variable length configurations), the stages can
be overlapped several configurations wide using the configu-
ration and data preload FIFO, (i.e., pipeline), for loose cou-
pling. If a configuration is executing and the data for the next
has already been preloaded, the data for the next but one
configuration may be preloaded. These preloads can be
speculative. The amount of speculation may be the compiler’s
trade-off. The reasonable length of the preload FIFO can be
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several configurations. It may be limited by diminishing
returns, algorithm properties, the compiler’s ability to sched-
ule preloads early and by silicon usage due to the IRAM
duplication factor, which may have to be at least as big as the
FIFO length. Due to this loosely coupled operation, the inter-
locking (to avoid data hazards between IRAMs) cannot be
done optimally by software (scheduling), but may have to be
enforced by hardware (hardware interlocking). Hence the
XPP cache controller and the XPP PAE array can be seen as
separate but not totally independent functional units.

The XPP cache controller may have several tasks. These
are depicted as states in FIG. 19. State transitions may take
place along the edges between states, whenever the condition
for the edge is true. As soon as the condition is not true any
more, the reverse state transition may take place. The activi-
ties for the states may be as follows.

At the lowest priority, the XPP cache controller 125 may
have to fulfill already issued preload commands, while writ-
ing back dirty IRAMs as soon as possible.

As soon as a configuration finishes, the next configuration
can be started. This is a more urgent task than write backs or
future preloads. To be able to do that, all associated yet
unsatisfied preloads may have to be finished first. Thus, they
may be preloaded with the high priority inherited from the
execute state.

A preload in turn can be blocked by an overlapping in-use
or dirty IRAM instance in a different block or by the lack of
empty IRAM instances in the target IRAM block. The former
can be resolved by waiting for the configuration to finish
and/or by a write back. To resolve the latter, the least recently
used clean IRAM can be discarded, thus becoming empty. If
no empty or clean IRAM instance exists, a dirty one may have
to be written back to the memory hierarchy. It cannot occur
that no empty, clean, or dirty IRAM instances exist, since only
one instance can be in-use and there should be more than one
instance in an IRAM block; otherwise, no caching effect is
achieved.

In an SMT environment the load FIFOs may have to be
replicated for every virtual processor. The pipelines of the
functional units may be fed from the shared fetch/reorder/
issue stage. All functional units may execute in parallel. Dif-
ferent units can execute instructions of different virtual pro-
cessors. FIG. 20 shows adding of simultaneous
multithreading.

So the following design parameters, with their smallest
initial value, may be obtained:

IRAM length: 128 words

The longer the IRAM length, the longer the running time
of'the configuration and the less influence the pipeline
startup has.

FIFO length: 1

This parameter may help to hide cache misses during
preloading. The longer the FIFO length, the less dis-
ruptive is a series of cache misses for a single con-
figuration.

IRAM duplication factor: (pipeline stages+caching factor)

*virtual processors: 3

Pipeline stages is the number of pipeline stages LD/EX/
WB plus one for every FIFO stage above one: 3

Caching factor is the number of IRAM duplicates avail-
able for caching: 0

Virtual processors is the number of virtual processors
with SMT: 1

The size of the state of a virtual processor is mainly depen-
dent on the FIFO length. It is

FIFO length*#IRAM ports*(32 bit (Address)+32 bit

(Size)).
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This may have to be replicated for every virtual processor.

The total size of memory used for the IRAMs may be:

#IRAM  ports*[IRAM  duplication  factor*IRAM
length*32 bit.

A first implementation will probably keep close to the
above-stated minimum parameters, using a FIFO length of
one, an IRAM duplication factor of four, an IRAM length of
128 and no simultaneous multithreading.

Implementation Improvements
Write Pointer

To further decrease the penalty for unloaded IRAMs, a
simple write pointer may be used per IRAM, which may keep
track of the last address already in the IRAM. Thus, no stall is
required, unless an access beyond this write pointer is
encountered. This may be especially useful ifall IRAMs have
to be reloaded after a task switch. The delay to the configu-
ration start can be much shorter, especially, if the preload
engine of the cache controller chooses the blocking IRAM
next whenever several IRAMs need further loading.

Longer FIFOs

The frequency at the bottom of the memory hierarchy
(main memory) cannot be raised to the same extent as the
frequency of the CPU core. To increase the concurrency
between the RISC core 112 and the PACT XPP core 102, the
prefetch FIFOs in FIG. 20 can be extended. Thus, the IRAM
contents for several configurations can be preloaded, like the
configurations themselves. A simple convention makes clear
which IRAM preloads belong to which configuration. The
configuration execute switches to the next configuration con-
text. This can be accomplished by advancing the FIFO write
pointer with every configuration execute, while leaving it
unchanged after every preload. Unassigned IRAM FIFO
entries may keep their contents from the previous configura-
tion, so every succeeding configuration may use the preced-
ing configuration’s IRAMX if no different IRAMx was pre-
loaded.

If none of the memory areas to be copied to IRAMs is in
any cache, extending the FIFOs does not help, as the memory
is the bottleneck. So the cache size should be adjusted
together with the FIFO length.

A drawback of extending the FIFO length is the increased
likelihood that the IRAM content written by an earlier con-
figuration is reused by a later one in another IRAM. A cache
coherence protocol can clear the situation. Note, however,
that the situation can be resolved more easily. If an overlap
between any new IRAM area and a currently dirty IRAM
contents of another IRAM bank is detected, the new IRAM is
simply not loaded until the write back of the changed IRAM
has finished. Thus, the execution of the new configuration
may be delayed until the correct data is available.

For a short (single entry) FIFO, an overlap is extremely
unlikely, since the compiler will usually leave the output
IRAM contents of the previous configuration in place for the
next configuration to skip the preload. The compiler may do
s0 using a coalescing algorithm for the IRAMs I vector reg-
isters. The coalescing algorithm may be the same as used for
register coalescing in register allocation.

Read Only IRAMS

Whenever the memory that is used by the executing con-
figuration is the source of a preload command for another
IRAM, an XPP pipeline stall may occur. The preload can only
be started when the configuration has finished and, if the
content was modified, the memory content has been written to
the cache. To decrease the number of pipeline stalls, it may be
beneficial to add an additional read only IRAM state. If the
IRAM is read only, the content cannot be changed, and the
preload of the data to the other IRAM can proceed without
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delay. This may require an extension to the preload instruc-
tions. The XppPreload and the XppPreloadClean instruction
formats can be combined to a single instruction format that
has two additional bits stating whether the IRAM will be read
and/or written. To support debugging, violations should be
checked at the IRAM ports, raising an exception when
needed.

Support for Data Distribution and Data Reorganization

The IRAMs may be block-oriented structures, which can
be read in any order by the PAE array. However, the address
generation may add complexity, reducing the number of
PAFEs available for the actual computation. Accordingly, the
IRAMs may be accessed in linear order. The memory hierar-
chy may be block oriented as well, further encouraging linear
access patterns in the code to avoid cache misses.

As the IRAM read ports limit the bandwidth between each
IRAM and the PAE array to one word read per cycle, it can be
beneficial to distribute the data over several IRAMs to remove
this bottleneck. The top of the memory hierarchy is the source
of the data, so the number of cache misses never increases
when the access pattern is changed, as long as the data locality
is not destroyed.

Many algorithms access memory in linear order by defini-
tion to utilize block reading and simple address calculations.
In most other cases and in the cases where loop tiling is
needed to increase the data bandwidth between the IRAMs
and the PAE array, the code can be transformed in a way that
data is accessed in optimal order. In many of the remaining
cases, the compiler cam modify the access pattern by data
layout rearrangements, (e.g., array merging), so that finally
the data is accessed in the desired pattern. If none of these
optimizations can be used because of dependencies, or
because the data layout is fixed, there are still two possibilities
to improve performance, which are data duplication and data
reordering.

Data Duplication

Data may be duplicated in several IRAMs. This may cir-
cumvent the IRAM read port bottleneck, allowing several
data items to be read from the input every cycle.

Several options are possible with a common drawback.
Data duplication can only be applied to input data. Output
IRAMs obviously cannot have overlapping address ranges.

Using several IRAM preload commands specifying just

different target IRAMs:

This way cache misses may occur only for the first
preload. All other preloads may take place without
cache misses. Only the time to transfer the data from
the top of the memory hierarchy to the IRAMs is
needed for every additional load. This is only benefi-
cial if the cache misses plus the additional transfer
times do not exceed the execution time for the con-
figuration.

Using an IRAM preload instruction to load multiple

IRAMSs concurrently:

As identical data is needed in several IRAMs, they can
be loaded concurrently by writing the same values to
all of them. This amounts to finding a clean IRAM
instance for every target IRAM, connecting them all
to the bus, and writing the data to the bus. The problem
with this instruction may be that it requires a bigger
immediate field for the destination (16 bits instead of
4 for the XPP 64). Accordingly, this instruction for-
mat may grow at a higher rate when the number of
IRAMs is increased for bigger XPP arrays.
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The interface of this instruction is for example:
XPPPreloadMultiple (int IRAMS, void *StartAddress, int
Size).

This instruction may behave as the XPPPreload/XPPPre-
loadClean instructions with the exception of the first param-
eter. The first parameter is IRAMS. This may be an immediate
(constant) value. The value may be a bitmap. For every bit in
the bitmap, the IRAM with that number may be a target for the
load operation.

There is no “clean” version, since data duplication is appli-
cable for read data only.

Data Reordering

Data reordering changes the access pattern to the data only.
It does not change the amount of memory that is read. Thus,
the number of cache misses may stay the same.

Adding additional functionality to the hardware:

Adding a vector stride to the preload instruction.

A stride (displacement between two clements in
memory) may be used in vector load operations to
load, e.g., a column of a matrix into a vector regis-
ter.

This is still a linear access pattern. It can be imple-
mented in hardware by giving a stride to the preload
instruction and adding the stride to the IRAM iden-
tification state. One problem with this instruction
may be that the number of possible cache misses
per IRAM load rises. In the worst case it can be one
cache miss per loaded value if the stride is equal to
the cache line size and all data is not in the cache.
But as already stated, the total number of misses
stays the same. Just the distribution changes. Still,
this is an undesirable effect.

The other problem may be the complexity of the
implementation and a possibly limited throughput,
as the data paths between the layers of the memory
hierarchy are optimized for block transfers. Trans-
ferring non-contiguous words will not use wide
busses in an optimal fashion.

The interface of the instruction is for example:
XPPPreloadStride (int IRAN, void *StartAddress,

int Size, int Stride)
XPPPreloadCleanStride (int IRAN, void *StartAd-
dress, int Size, int Stride).

This instruction may behave as the XPPPreload/XP-
PPreloadClean instructions with the addition of
another parameter. The fourth parameter is the vec-
tor stride. This may be an immediate (constant)
value. It may tell the cache controller to load only
every n” value to the specified IRAM.

Reordering the data at run time, introducing temporary

copies.
On the RISC:

The RISC can copy data at a maximum rate of one
word per cycle for simple address computations
and at a somewhat lower rate for more complex
ones.

With a memory hierarchy, the sources may be read
from memory (or cache, if they were used recently)
once and written to the temporary copy, which may
then reside in the cache, too. This may increase the
pressure in the memory hierarchy by the amount of
memory used for the temporaries. Since temporar-
ies are allocated on the stack memory, which may
be re-used frequently, the chances are good that the
dirty memory area is redefined before it is written
back to memory. Hence the write back operation to
memory is of no concern.
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Via an XPP configuration:

The PAE array can read and write one value from
every IRAM per cycle. Thus, if half of the IRAMs
are used as inputs and half ofthe IRAMs are used as
outputs, up to eight (or more, depending on the
number of IRAMs), values can be reordered per
cycle, using the PAE array for address generation.
As the inputs and outputs reside in IRAMs, it does
not matter if the reordering is done before or after
the configuration that uses the data. The IRAMs
can be reused immediately.

IRAM Chaining

If'the PAEs do not allow further unrolling, but there are still
IRAMs left unused, it may be possible to load additional
blocks of data into these IRAMs and chain two IRAMs via an
address selector. This might not increase throughput as much
as unrolling would do, but it still may help to hide long
pipeline startup delays whenever unrolling is not possible.
Software/Hardware Interface

According to the design parameter changes and the corre-
sponding changes to the hardware, according to embodi-
ments of the present invention, the hardware/software inter-
face has changed. In the following, some prominent changes
and their handling are discussed.

Explicit Cache

The proposed cache is not a usual cache, which would be,
without considering performance issues, invisible to the pro-
grammer/compiler, as its operation is transparent. The pro-
posed cache is an explicit cache. Its state may have to be
maintained by software.

Cache Consistency and Pipelining of Preload/Configuration/
Write back

The software may be responsible for cache consistency. It
may be possible to have several IRAMs caching the same or
overlapping memory areas. As long as only one of the IRAMs
is written, this is perfectly ok. Only this IRAM will be dirty
and will be written back to memory. If, however, more than
one of the IRAMSs is written, which data will be written to
memory is not defined. This is a software bug (non-determin-
istic behavior).

As the execution of the configuration is overlapped with
the preloads and write backs of the IRAMs, it may be possible
to create preload/configuration sequences that contain data
hazards. As the cache controller and the XPP array can be
seen as separate functional units, which are effectively pipe-
lined, these data hazards are equivalent to pipeline hazards of
a normal instruction pipeline. As with any ordinary pipeline,
there are two possibilities to resolve this, which are hardware
interlocking and software interlocking.

Hardware interlocking:

Interlocking may be done by the cache controller. If the
cache controller detects that the tag of a dirty or in-use
item in IRAMX overlaps a memory area used for another
IRAM preload, it may have to stall that preload, effec-
tively serializing the execution of the current configura-
tion and the preload.

Software interlocking:

If the cache controller does not enforce interlocking, the
code generator may have to insert explicit synchronize
instructions to take care of potential interlocks. Inter-
procedural and inter-modular alias and data dependency
analyses can determine if this is the case, while sched-
uling algorithms may help to alleviate the impact of the
necessary synchronization instructions.

In either case, as well as in the case of pipeline stalls due to

cache misses, SMT can use the computation power that would
be wasted otherwise.
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Code Generation for the Explicit Cache

Apart from the explicit synchronization instructions issued
with software interlocking, the following instructions may
have to be issued by the compiler.

Configuration preload instructions, preceding the IRAM
preload instructions, that will be used by that configu-
ration. These should be scheduled as early as possible by
the instruction scheduler.

IRAM preload instructions, which should also be sched-
uled as early as possible by the instruction scheduler.

Configuration execute instructions, following the IRAM
preload instructions for that configuration. These
instructions should be scheduled between the estimated
minimum and the estimated maximum of the cumulative
latency of their preload instructions.

IRAM synchronization instructions, which should be
scheduled as late as possible by the instruction sched-
uler. These instructions must be inserted before any
potential access of the RISC to the data areas that are
duplicated and potentially modified in the IRAMs. Typi-
cally, these instructions will follow a long chain of com-
putations on the XPP, so they will not significantly
decrease performance.

Asynchronicity to Other Functional Units

An XppSync( ) must be issued by the compiler, if an
instruction of another functional unit (mainly the L.d/St unit)
can access a memory area that is potentially dirty or in-use in
an IRAM. This may force a synchronization of the instruction
streams and the cache contents, avoiding data hazards. A
thorough inter-procedural and inter-modular array alias
analysis may limit the frequency of these synchronization
instructions to an acceptable level.

Another Implementation

For the previous design, the IRAMs are existent in silicon,
duplicated several times to keep the pipeline busy. This may
amount to a large silicon area, that is not fully busy all the
time, especially, when the PAE array is not used, but as well
whenever the configuration does not use all of the IRAMs
present in the array. The duplication may also make it difficult
to extend the lengths of the IRAMs, as the total size of the
already large IRAM area scales linearly.

For a more silicon efficient implementation, the IRAMs
may be integrated into the first level cache, making this cache
bigger. This means that the first level cache controller is
extended to feed all IRAM ports of the PAE array. This way
the XPP and the RISC may share the first level cache inamore
efficient manner. Whenever the XPP is executing, it may steal
as much cache space as it needs from the RISC. Whenever the
RISC alone is running it will have plenty of additional cache
space to improve performance.

The PAE array may have the ability to read one word and
write one word to each IRAM port every cycle. This can be
limited to either a read or a write access per cycle, without
limiting programmability. If data has to be written to the same
area in the same cycle, another IRAM port can be used. This
may increase the number of used IRAM ports, but only under
rare circumstances.

This leaves sixteen data accesses per PAE cycle in the
worst case. Due to the worst case of all sixteen memory areas
for the sixteen IRAM ports mapping to the same associative
bank, the minimum associativity for the cache may be a
16-way set associativity. This may avoid cache replacement
for this rare, but possible, worst-case example.

Two factors may help to support sixteen accesses per PAE
array cycle:

The clock frequency of the PAE array generally has to be

lower than for the RISC by a factor of two to four. The
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reasons lie in the configurable routing channels with
switch matrices which cannot support as high a fre-
quency as solid point-to-point aluminum or copper
traces.

This means that two to four IRAM port accesses can be
handled serially by a single cache port, as long as all
reads are serviced before all writes, if there is a potential
overlap. This can be accomplished by assuming a poten-
tial overlap and enforcing a priority ordering of all
accesses, giving the read accesses higher priority.

A factor of two, four, or eight is possible by accessing the
cache as two, four, or eight banks of lower associativity
cache.

For a cycle divisor of four, four banks of four-way associa-
tivity will be optimal. During four successive cycles,
four different accesses can be served by each bank of
four way associativity. Up to four-way data duplication
can be handled by using adjacent IRAM ports that are
connected to the same bus (bank). For further data dupli-
cation, the data may have to be duplicated explicitly,
using an XppPreloadMultiple( ) cache controller
instruction. The maximum data duplication for sixteen
read accesses to the same memory area is supported by
an actual data duplication factor of four—one copy in
each bank. This does not affect the RAM efficiency as
adversely as an actual data duplication of 16 for the
embodiment discussed above under the heading “A
Load Store Architecture.”

FIG. 21 shows an example of a cache structure according to
an example embodiment of the present invention. The cache
controller may run at the same speed as the RISC. The XPP
may run at a lower, (e.g., quarter), speed. Accordingly, in the
worst case, sixteen read requests from the PAE array may be
serviced in four cycles of the cache controller, with an addi-
tional four read requests from the RISC. Accordingly, one bus
at full speed can be used to service four IRAM read ports.
Using four-way associativity, four accesses per cycle can be
serviced, even in the case that all four accesses go to addresses
that map to the same associative block.

a) The RISC still has a 16-way set associative view of the
cache, accessing all four four-way set associative banks
in parallel. Due to data duplication, it is possible that
several banks return a hit. This may be taken care of with
a priority encoder, enabling only one bank onto the data
bus.

b) The RISC is blocked from the banks that service IRAM
port accesses. Wait states are inserted accordingly.

¢) The RISC shares the second cache access port of a
two-port cache with the RAM interface, using the cycles
between the RAM transfers for its accesses.

d) The cache is extended by a fifth 4-way set associative
bank, used exclusively by the RISC. (The other banks
are only accessed when they are not used by the current
XPP configuration. PROBLEM: dirty line in a blocked
bank).

With respect to a 2 port RAM, concurrent reads may be
accommodated. Concurrent R/W to a same cache line may be
avoided by software synchronization/hardware arbiter.

A problem is that a read could potentially address the same
memory location as a write. The value read may depend on
the order of the operation so that the order is fixed, i.e., all
writes have to take place after all reads, but before the reads of
the next cycle, except, if the reads and writes actually do not
overlap. This can only be a problem with data duplication,
when only one copy of the data is actually modified. There-
fore, modifications are forbidden with data duplication.
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Programming Model Changes
Data Interference

According to an example embodiment of the present inven-
tion that is without dedicated IRAMs, it is not possible any-
more to load input data to the IRAMSs and write the output
data to a different IRAM, which is mapped to the same
address, thus operating on the original, unaltered input data
during the whole configuration.

As there are no dedicated IRAMs anymore, writes directly
modify the cache contents, which will be read by succeeding
reads. This changes the programming model significantly.
Additional and more in-depth compiler analyses are accord-
ingly necessary.

Hiding Implementation Details

The actual number of bits in the destination field of the
XppPreloadMultiple instruction is implementation depen-
dent. It depends on the number of cache banks and their
associativity, which are determined by the clock frequency
divisor of the XPP PAE array relative to the cache frequency.
However, this can be hidden by the assembler, which may
translate IRAM ports to cache banks, thus reducing the num-
ber of bits from the number of IRAM ports to the number of
banks. For the user, it is sufficient to know that each cache
bank services an adjacent set of IRAM ports starting at a
power of two. Thus, it may be best to use data duplication for
adjacent ports, starting with the highest power of two greater
than the number of read ports to the duplicated area.
Program Optimizations Code Analysis

Analyses may be performed on programs to describe the
relationships between data and memory location in a pro-
gram. These analyses may then be used by different optimi-
zations. More details regarding the analyses are discussed in
Michael Wolfe, “High Performance Compilers for Parallel
Computing” (Addison-Wesley 1996); Hans Zima & Barbara
Chapman, “Supercompilers for parallel and vector comput-
ers” (Addison-Wesley 1991); and Steven Muchnick,
“Advanced Compiler Design and Implementation” (Morgan
Kaufmann 1997).

Data-Flow Analysis

Data-flow analysis examines the flow of scalar values
through a program to provide information about how the
program manipulates its data. This information can be repre-
sented by dataflow equations that have the following general
form for object i, that can be an instruction or a basic block,
depending on the problem to solve:

Ex[i]=Prod[i] ¥(In[{]-Supp[7]).

This means that data available at the end of the execution of
object 1, Ex[I], are either produced by i, Prod|[i] or were alive
at the beginning of i, In[i], but were not deleted during the
execution of i, Suppl[i].

These equations can be used to solve several problems,
such as, e.g.,

the problem of reaching definitions;

the Def-Use and Use-Def chains, describing respectively,

for a definition, all uses that can be reached from it, and,
for a use, all definitions that can reach it;

the available expressions at a point in the program; and/or

the live variables at a point in the program, whose solutions

are then used by several compilation phases, analysis, or
optimizations.

For example, with respect to a problem of computing the
Def-Use chains of the variables of a program, this informa-
tion can be used for instance by the data dependence analysis
for scalar variables or by the register allocation. A Def-Use
chain is associated to each definition of a variable and is the
set of all visible uses from this definition. The data-flow



US 9,170,812 B2

53

equations presented above may be applied to the basic blocks
to detect the variables that are passed from one block to
another along the control flow graph. In FIG. 22, which shows
a control-flow graph of a piece of a program, two definitions
for variable x are produced: S1in B1 and S4 in B3. Hence, the
variable that can be found at the exit of Bl is Ex(Bl)=
{x(S1)}; and at the exit of B4 is Ex(B4)={x(S4)}. Moreover,
Ex(B2)=Ex(B1) as no variable is defined in B2. Using these
sets, it is the case that the uses of x in S2 and S3 depend on the
definition of x in B1 and that the use of x in S5 depends on the
definitions of x in B1 and B3. The Def-use chains associated
with the definitions are then D(S1)={S2, S3, S5} and
D(S4)={S5}.
Data Dependence Analysis

A data dependence graph represents the dependencies
existing between operations writing or reading the same data.
This graph may be used for optimizations like scheduling, or
certain loop optimizations to test their semantic validity. The
nodes of the graph represent the instructions, and the edges
represent the data dependencies. These dependencies can be
of three types: true (or flow) dependence when a variable is
written before being read, anti-dependence when a variable is
read before being written, and output dependence when a
variable is written twice. A more formal definition is provided
in Hans Zima et al., supra and is presented below.

DEFINITION

LetS and S'be two statements. Then S' depends on S, noted
SoS' iff:

(1) S is executed before S'

)

i<}

v e EVAR: v e DEF(S)I USE(S) v v e USE(S)I DEF(S") v

v e DEF(S)I DEF(S")

(3) There is no statement T such that S is executed before T

and T is executed before S', and v € DEF(T),

where VAR is the set of the variables of the program,

DEF(S) is the set of the variables defined by instruction
S, and USE(S) is the set of variables used by instruction
S.

Moreover, if the statements are in a loop, a dependence can
be loop independent or loop carried. This notion introduces
the definition of the distance of a dependence. When a depen-
dence is loop independent, it occurs between two instances of
different statements in the same iteration, and its distance is
equal to 0. By contrast, when a dependence is loop carried, it
occurs between two instances in two different iterations, and
its distance is equal to the difference between the iteration
numbers of the two instances.

The notion of direction of dependence generalizes the
notion of distance, and is generally used when the distance of
a dependence is not constant, or cannot be computed with
precision. The direction of a dependence is given by < if the
dependence between S and S' occurs when the instance of S is
in an iteration before the iteration of the instance of S',=if the
two instances are in the same iteration, and > if the instance of
S is in an iteration after the iteration of the instance of S'.

In the case of a loop nest, there are distance and direction
vector, with one element for each level ofthe loop nest. FIGS.
23 to 27 illustrate these definitions. FIG. 23 illustrates a code
and diagram of an example of a true dependence with distance
0 on array ‘a’. FIG. 24 illustrates a code and diagram of an
example of an anti-dependence with distance O on array “b’.
FIG. 25 illustrates a code and diagram of an example of an
output dependence with distance 0 on array ‘a’. FIG. 26
illustrates a code and diagram of an example of a dependence
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with direction vector (==) between S1 and S2 and a depen-
dence with direction vector (=,=,<) between S2 and S2. FIG.
27 illustrates a code and diagram of an example of an anti-
dependence with distance vector (0,2).

The data dependence graph may be used by a lot of opti-
mizations, and may also be useful to determine if their appli-
cationis valid. For instance, aloop can be vectorized if its data
dependence graph does not contain any cycle.
Interprocedural Alias Analysis

An aim of alias analysis is to determine if a memory loca-
tion is aliased by several objects, e.g., variables or arrays, in a
program. It may have a strong impact on data dependence
analysis and on the application of code optimizations. Aliases
can occur with statically allocated data, like unions in C
where all fields refer to the same memory area, or with
dynamically allocated data, which are the usual targets of the
analysis. A typical case of aliasing where p alias b is:

int b[100], *p;
for (p=b;p < &b[100];p++)
*p=0;

Alias analysis can be more or less precise depending on
whether or not it takes the control-flow into account. When it
does, it is called flow-sensitive, and when it does not, it is
called flow insensitive. Flow-sensitive alias analysis is able to
detect in which blocks along a path two objects are aliased. As
it is more precise, it is more complicated and more expensive
to compute. Usually flow insensitive alias information is suf-
ficient. This aspect is illustrated in FIG. 28 where a flow-
insensitive analysis would find that p alias b, but where a
flow-sensitive analysis would be able to find that p alias b only
in block B2.

Furthermore, aliases are classified into must-aliases and
may-aliases. For instance, considering flow-insensitive may-
alias information, x alias y, iff x and y may, possibly at
different times, refer to the same memory location. Consid-
ering flow-insensitive must-alias information, x alias y, if x
and y must, throughout the execution of a procedure, refer to
the same storage location. In the case of FIG. 28, if flow-
insensitive may-alias information is considered, p alias b
holds, whereas if flow-insensitive must-alias information is
considered, p alias b does not hold. The kind of information to
use depends on the problem to solve. For instance, if removal
of redundant expressions or statements is desired, must-
aliases must be used, whereas if build of a data dependence
graph is desired, may-aliases are necessary.

Finally this analysis must be interprocedural to be able to
detect aliases caused by non-local variables and parameter
passing. The latter case is depicted in the code below, which
is an example for aliasing parameter passing, where i and j are
aliased through the function call where k is passed twice as
parameter.

void foo (int *i, int* )

= el

}

foo (&k, &k);

Interprocedural Value Range Analysis

This analysis can find the range of values taken by the
variables. It can help to apply optimizations like dead code
elimination, loop unrolling and others. For this purpose, it can
use information on the types of variables and then consider
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operations applied on these variables during the execution of
the program. Thus, it can determine, for instance, if tests in
conditional instruction are likely to be met or not, or deter-
mine the iteration range of loop nests.

This analysis has to be interprocedural as, for instance,
loop bounds can be passed as parameters of a function, as in
the following example. It is known by analyzing the code that
in the loop executed with array ‘a’, N is at least equal to 11,
and that in the loop executed with array ‘b’, N is at most equal
to 10.

void foo (int *c, int N)
{ . .
nt1;
for (i=0; i<Nj; i++)
efi] = g(i,2);

if (N> 10)
foo (a,N);
else
foo (b,N);

The value range analysis can be supported by the program-
mer by giving further value constraints which cannot be
retrieved from the language semantics. This can be done by
pragmas or a compiler known assert function.

Alignment Analysis

Alignment analysis deals with data layout for distributed
memory architectures. As stated by Saman Amarasinghe,
“Although data memory is logically a linear array of cells, its
realization in hardware can be viewed as a multi-dimensional
array. Given a dimension in this array, alignment analysis will
identify memory locations that always resolve to a single
value in that dimension. For example, if the dimension of
interest is memory banks, alignment analysis will identify if
a memory reference always accesses the same bank.” This is
the case in the second part of FIG. 29, which is a reproduction
of a figure that can be found in Sam Larsen, Emmet Witchel
& Saman Amarasinghe, “Increasing and Detecting Memory
Address Congruence,” Proceedings of the 2002 IEEE Inter-
national Conference on Parallel Architectures and Compila-
tion Techniques (PACT 02), 18-29 (September 2002). All
accesses, depicted in dark squares, occur to the same memory
bank, whereas in the first part, the accesses are not aligned.
Saman Amarasinghe adds that “Alignment information is
useful in a variety of compiler-controlled memory optimiza-
tions leading to improvements in programmability, perfor-
mance, and energy consumption.”

Alignment analysis, for instance, is able to help find a good
distribution scheme of the data and is furthermore useful for
automatic data distribution tools. An automatic alignment
analysis tool can be able to automatically generate alignment
proposals for the arrays accessed in a procedure and thus
simplifies the data distribution problem. This can be extended
with an interprocedural analysis taking into account dynamic
realignment.

Alignment analysis can also be used to apply loop align-
ment that transforms the code directly rather than the data
layout in itself, as discussed below. Another solution can be
used for the PACT XPP, relying on the fact that it can handle
aligned code very efficiently. It includes adding a conditional
instruction testing if'the accesses in the loop body are aligned
followed by the necessary number of peeled iterations of the
loop body, then the aligned loop body, and then some com-
pensation code. Only the aligned code is then executed by the
PACT XPP. The rest may be executed by the host processor. If
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the alignment analysis is more precise (inter-procedural or
inter-modular), less conditional code has to be inserted.
Code Optimizations

Discussion regarding many of the optimizations and trans-
formations discussed below can be found in detail in David F.
Bacon, Susan L. Graham & Oliver J. Sharp, “Compiler Trans-
formations for High-Performance Computing,” ACM Com-
puting Surveys, 26(4):325-420 (1994); Michael Wolfe, supra;
Hans Zima et al., supra; and Steven Muchnick, supra.
General Transformations

Discussed below are a few general optimizations that can
be applied to straightforward code and to loop bodies. These
are not the only ones that appear in a compiler.
Constant Propagation

A constant propagation may propagate the values of con-
stants into the expressions using them throughout the pro-
gram. This way alot of computations can be done statically by
the compiler, leaving less work to be done during the execu-
tion. This part of the optimization is also known as constant
folding.

An example of constant propagation is:

N =256; for(i=0; i<=256; i++)
c=3; afi] = b [i] + 3;
for (i=0; i<=N; i++)
a[i] = b[i] +¢;
Copy Propagation

A copy propagation optimization may simplify the code by
removing redundant copies of the same variable in the code.
These copies can be produced by the programmer or by other
optimizations. This optimization may reduce the register
pressure and the number of register-to-register move instruc-
tions.

An example of copy propagation is:

t=i%4 t=i*4;
r=t; for (i=0; i<=N; i++)
for (i=0; i<=N; i++) aft] = b[t] + a[i];

afr] = b[r] +ali;

Dead Code Elimination

A dead code elimination optimization may remove pieces
of code that will never be executed. Code is never executed if
it is in the branch of a conditional statement whose condition
is always evaluated to true or false, or if it is a loop body,
whose number of iterations is always equal to 0.

Code updating variables that are never used is also useless
and can be removed as well. If a variable is never used, then
the code updating it and its declaration can also be eliminated.

An example of dead code elimination is:

for (i = 0; i<=N; i++){

for (j=0; j<O; j++)
a[j] =b[j] +a[il;

for (j=0; j<10; j++) }
a[j+1] = a[j] + b[j];

for (i=0; i<=N; i++){
for (j=0; j<10; j++)
afj+1] = a[j] + b[j];

Forward Substitution

A forward substitution optimization is a generalization of
copy propagation. The use of a variable may bereplaced by its
defining expression. It can be used for simplifying the data
dependency analysis and the application of other transforma-
tions by making the use of loop variables visible.
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An example of forward substitution is:

58

analysis of the loop. This may also remove dependence cycles
due to the update of the variable, enabling vectorization.
An example of induction variable elimination is:

c=N+1; for (i=0; i<=N; i++)
for (i=0; i<=Nj i++) a[N+1] =b[N+1] + a[i];
afc] = b[c] + a[i]; 3
’ for (i=0; i<=N; i++){ for (i=0; i<=Nj i++){
k=k+3; a[i] = b[i] + a[k+(i+1)*3];
Idiom Recognition ali] = bli] + alkl; } ket (N1)%3;
Anidiom recognition transformation may recognize pieces .
of code and can replace them by calls to compiler known 10 ) )
functions, or less expensive code sequences, like code for Loop-InvaI.‘lant Code Motion ) )
absolute value computation. A loop-invariant code motion transformation may move
An example of idiom recognition is: computations outside a loop if their result is the same in all
iterations. This may allow a reduction of the number of com-
15 putations in the loop body. This optimization can also be
for (i=0; i<N; i++){ for (i=0; i<N; i++){_ . conducted in the reverse fashion in order to get perfectly
icf=(ca<[(l)]) - bk z - zgg (;)F’ Ll nested loops, that are easier to handle by other optimizations.
c=—c; dfi] = ¢; ’ An example of loop-invariant code motion is:
d[i] =¢;
¥ 20
for (i=0; i<Nj; i++) if (N>=0)
. a [i] = b[i] + x*y; ¢ =x*y;
Loop Transformations for (i=0; i<N; i++)
Loop Normalization a[i] = b[i] +¢;
A loop normalization transformation may ensure that the ’s
iteration space of the loop i§ always with a lower bpund equal Loop Unswitching
toOorl (dependlng onthe Input language), and with a step of A loop unswitching transformation may move a condi-
1. The array subscript expressions and the bounds ofthe loops tional instruction outside of'aloop body ifits condition is loop
are modified accordingly. It can be used before loop fusion to invariant. The branches of the condition may then be made of
ﬁnél .opplortumt}beis, alllld case 11Et§r-100§ dependenclei analyzls, 30 the original loop with the appropriate original statements of
and 1t also enables the use of dependence tests that need a the conditional statement. It may allow further parallelization
normalized loop to be applied: . -
N of the loop by removing control-flow in the loop body and
An example of loop normalization is: . . .
also removing unnecessary computations from it.
An example of loop unswitching is:
for (i=2; i<N; i=i+2) for (i=0; i<(N-2)/2; i++) 35
afi] = b[i]; a[2*i+2] = b[2*i+2];
for (i=0; i<N; i++){ if (x>2)
afi] = b[i] + 3; for (i=0; i<N; i++){
Loop Reversal ifx>2) ali] = b[i] +3;
A loop reversal transformation may change the directionin el:;[l] = cfi]+2; bLi] =eli] +2;
which the iteration space of a loop is scanned. It is usually BliJ=c[i] - 2: else
used in conjunction with loop normalization and other trans- 1 for (i=0; i<N; i++){
formations, like loop interchange, because it changes the ali] = b[i] +3;
dependence vectors. bLi] =eli] - 2;
An example of loop reversal is: 5
If-Conversion
for (i=N; i>=0; i—-) for (i=0; i<=N; i++) An if-conversion transformation may be applied on loop
ali] = blil; ali] = blil; bodies with conditional instructions. It may change control
< dependencies into data dependencies and allow then vector-
Strength Reduction ization to take place. It can be used in conjunction with loop
A strength reduction transformation may replace expres- unswitching to handle loop bodies with several basic blocks.
sions in the loop body by equivalent but less expensive ones. The conditions where array expressions could appear may be
It can be used on induction variables, other than the loop replaced by boolean terms called guards. Processors with
variable, to be able to eliminate them. s predicated execution support can execute directly such code.
An example of strength reduction is: An example of if-conversion is:
for (i=0; i<N; i++) t=c¢; for (i=0; i<N; i++){ for (i=0; i<N; i++){
a[i] = b[i] + c¢*i; for (i=0; i<N; i++){ afi] = a[i] + b[i]; afi] = a[i] + b[i];
a[i] =b[i] + t; 60 if (a[i] 1= 0) c2 = (a[i] 1= 0);
t=t+c; if (a[i] > c[i]) if (c2) c4 = (afi] > c[i]);
1 afi] =a[i] - 2; if (c2 && c4) a[i] =a[i] - 2;
else if (c2 && ! c4) ai] = afi] + 1;
afi] =a[i] + 1; d[i] = a[i] * 2;
Variable Elimination dfi] =ali]* 2; }
An induction variable elimination transformation can use 65 !

strength reduction to remove induction variables from a loop,
hence reducing the number of computations and easing the
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Strip-Mining

A strip-mining transformation may enable adjustment of
the granularity of an operation. It is commonly used to choose
the number of independent computations in the inner loop
nest. When the iteration count is not known at compile time,
it can be used to generate a fixed iteration count inner loop
satisfying the resource constraints. It can be used in conjunc-
tion with other transformations like loop distribution or loop

5

interchange. Itis also called loop sectioning. Cycle shrinking, 0

also called stripping, is a specialization of strip-mining.
An example of strip-mining is:

for (i=0; i<N; i++) up = (N/16)*16;
a [i] = b[i] + C; for(i=0; i<up; i=1+ 16)
a[i:1416] = b[i:i+16] + ¢;
for (j=i+1; j<N; j++)
a[i] =b[i] + ¢;

Loop Tiling

A loop tiling transformation may modify the iteration
space of a loop nest by introducing loop levels to divide the
iteration space in tiles. It is a multi-dimensional generaliza-
tion of strip-mining. It is generally used to improve memory
reuse, but can also improve processor, register, TLB, or page
locality. It is also called loop blocking.

The size of the tiles of the iteration space may be chosen so
that the data needed in each tile fit in the cache memory, thus
reducing the cache misses. In the case of coarse-grain com-
puters, the size of the tiles can also be chosen so that the
number of parallel operations of the loop body fits the number
of processors of the computer.

An example of loop tiling is:

for (i=0; i<N; i++)
for (j=0; j<N; j++)
a[i]j] = blil[il;

for (ii=0; ii<Nj ii = ii+16)
for (jj=0; jj<N; jj = jj+16)
for (i=ii; i<min(ii+15,N); j++)
for (j=jj; j<min(jj+15,N); j++)
a[i][j] = b{illil;

Loop Interchange
A loop interchange transformation may be applied to a
loop nest to move inside or outside (depending on the
searched effect) the loop level containing data dependencies.
It can:
enable vectorization by moving inside an independent loop
and outside a dependent loop,
improve vectorization by moving inside the independent
loop with the largest range,
deduce the stride,
increase the number of loop-invariant expressions in the
inner-loop, or
improve parallel performance by moving an independent
loop outside of a loop nest to increase the granularity of
each iteration and reduce the number of barmier syn-
chronizations.
An example of a loop interchange is:

for (i=0; i<N; i++)
for (j=0; j<N; j++)
a[i] = a[i] + b[i][j];

for (j=0; j<N; j++)
for (i=0; i<N; i++)

a[i] = afi] + b[i][];

Loop Coalescing/Collapsing

Aloop coalescing/collapsing transformation may combine
aloop nest into a single loop. It can improve the scheduling of
the loop, and also reduces the loop overhead. Collapsing is a
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simpler version of coalescing in which the number of dimen-
sions of arrays is reduced as well. Collapsing may reduce the
overhead of nested loops and multidimensional arrays. Col-
lapsing can be applied to loop nests that iterate over memory
with a constant stride.

Otherwise, loop coalescing may be a better approach. It
can be used to make vectorizing profitable by increasing the
iteration range of the innermost loop.

An example of loop coalescing is:

for (i=0; i<N; i++) for (k=0; k<N*M; k++) {
for (j=0; j<M; j++) i= ((k=1)/m)*m+1;
ali]j] = ali](] + ¢; j = (T-1)%m) + 1;

) ali](j] = a[illi] + <

Loop Fusion

A loop fusion transformation, also called loop jamming,
may merge two successive loops. It may reduce loop over-
head, increases instruction-level parallelism, improves regis-
ter, cache, TLB or page locality, and improves the load bal-
ance of parallel loops. Alignment can be taken into account by
introducing conditional instructions to take care of dependen-
cies.

An example of loop fusion is:

for (i=0; i<N; i++) for (i=0; i<Nj; i++){
a[i] = b[i] +¢; a[i] =b[i] + ¢;
for (i=0; i<N; i++) d[i] = e[i] + ¢;
d[i] =e[i] +c; }

Loop Distribution

Aloop distribution transformation, also called loop fission,
may allow to split a loop in several pieces in case the loop
body is too big, or because of dependencies. The iteration
space of the new loops may be the same as the iteration space
of the original loop. Loop spreading is a more sophisticated
distribution.

An example of loop distribution is:

for (i=0; i<N; i++){ for (i=0; i<N; i++)
a[i] =b[i] +¢; a[i] = b[i] +¢;
d[i] =e[i] +¢; for (i=0; i<N; i++)
d[i] = e[i] + ¢;

Loop Unrolling/Unroll-and-Jam

A loop unrolling/unroll-and-jam transformation may rep-
licate the original loop body in order to get a larger one. A
loop can be unrolled partially or completely. It may be used to
get more opportunity for parallelization by making the loop
body bigger. It may also improve register or cache usage and
reduces loop overhead. Loop unrolling the outer loop fol-
lowed by merging the induced inner loops is referred to as
unroll-and-jam.

An example of loop unrolling is:

for (i=0; i<N; i++) for (i=0; i<Nj; i = i+2){
a[i] = b[i] +¢; a[i] = b[i] +¢;
afi+1] =b[i+1] +¢;

¥
if (N-1)%2) ==1)
a[N-1]=b[N-1] +¢;
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Loop Alignment

A loop alignment optimization may transform the code to
get aligned array accesses in the loop body. Its effect may be
to transform loop-carried dependencies into loop-indepen-
dent dependencies, which allows for extraction of more par-
allelism from a loop. It can use different transformations, like
loop peeling or introduce conditional statements, to achieve
its goal. This transformation can be used in conjunction with
loop fusion to enable this optimization by aligning the array
accesses in both loop nests. In the example below, all accesses
to array ‘a’ become aligned.

An example of loop alignment is:

for (i=2; i<=Nj i++){
a[i] = b[i] + c[i];
d[i] = afi-1] * 2;
e[i] = afi-1] + d[i+1];
¥

for (i=1; i<=N; i++){
if (i>1) afi] = b[i] + c]il;
i (i<N) d[i+1] = afi] * 2
i (i<N) e[i+1] = afi] + d[i+2];

Loop Skewing

A loop skewing transformation may be used to enable
parallelization of a loop nest. It may be useful in combination
with loop interchange. It may be performed by adding the
outer loop index multiplied by a skew factor, f, to the bounds
of the inner loop variable, and then subtracting the same
quantity from every use of the inner loop variable inside the
loop.

An example of loop skewing is:

for (i=1; i<=Nj i++){
for (j=1; j<=N; j++)
afi] = a[i+j] + ¢

for (i=1; i<=N; i++){
for (j=i+1; j<=i+N; j++)

afi] = afj] + ¢

Loop Peeling

Aloop peeling transformation may remove a small number
of beginning or ending iterations of a loop to avoid depen-
dences in the loop body. These removed iterations may be
executed separately. It can be used for matching the iteration
control of adjacent loops to enable loop fusion.

An example of loop peeling is:

for (i=0; i<=N; i++)

a[i][N] = a[0][N] + a[N][N];

a[O1[N] = a[0][N] + a[N[N;
for (i=1; i<=N-1; i++)

a[i][N] = a[O][N] + a[N][N];
a[N][N] = a[0][N] + a[N][NJ];

Loop Splitting

A loop splitting transformation may cut the iteration space
in pieces by creating other loop nests. It is also called Index
Set Splitting and is generally used because of dependencies
that prevent parallelization. The iteration space of the new
loops may be a subset of the original one. It can be seen as a
generalization of loop peeling.

An example of loop splitting is:

for (i=0; i<=N; i++)
a[i] = a[N-i+1] + ¢;

for (i=0; i<(N+1)/2; i++)
afi] = a[N-i+1] + ¢;

for (i = (N+1)/2; i<=N; i++)
afi] = a[N-i+1] + ¢;

Node Splitting
A node splitting transformation may split a statement in
pieces. It may be used to break dependence cycles in the
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dependence graph due to the too high granularity of the
nodes, thus enabling vectorization of the statements.
An example of node splitting is:

for (i=0; i<N; i++){
b[i] = a[i] + ¢[i] * d[i];
a[i+1] = b[i] * (d[i] - c[i]);

for (i=0; i<N; i++){
t1[i] = cfi] * d[i];
t2[i] =d[i] - c[i];
b[i] = a[i] + t1[i];
afi+1] = b[i] * £2[i];

10

Scalar Expansion
A scalar expansion transformation may replace a scalar in
a loop by an array to eliminate dependencies in the loop body
5 and enable parallelization of the loop nest. If the scalaris used
after the loop, a compensation code must be added.
An example of scalar expansion is:

—

20 for (i=0; i<N; i++){ for (i=0; i<N; i++){

¢ =b[il; tmpl[i] = b[i];
ali] = afi] +¢; afi] = a[i] + tmp][i);
¥
¢ = tmp[N-1];
25 Array Contraction/Array Shrinking

An array contraction/array shrinking transformation is the
reverse transformation of scalar expansion. It may be needed
if scalar expansion generates too many memory require-
ments.

30 An example of array contraction is:
for (i=0; i<N; i++) for (i=0; i<N; i++)
for (=03 j<N; j++){ for (=03 j<N; j++){
ti][j] = a[i][i] * 3; tfj] = afi][i] * 3;
35 bi][j] = t][] + e[il; bliJ[] =[] +<[l;

Scalar Replacement
A scalar replacement transformation may replace an
40 invariant array reference in a loop by a scalar. This array
element may be loaded in a scalar before the inner loop and
stored again after the inner loop if it is modified. It can be used
in conjunction with loop interchange.
An example of scalar replacement is:

45
for (i=0; i<Nj i++) for (i=0; i<N; i++){
for (j=0; j<N; j++) tmp = ali];
a[i] = a[i] + b[i][jl; for (j=0; j<N; j++)
tmp = tmp + b[i][j];
a[i] = tmp;
50

Reduction Recognition
A reduction recognition transformation may allow han-
dling of reductions in loops. A reduction may be an operation
that computes a scalar value from arrays. It can be a dot
product, the sum or minimum of a vector for instance. A goal
is then to perform as many operations in parallel as possible.
One way may be to accumulate a vector register of partial
results and then reduce it to a scalar with a sequential loop.
60 Maximum parallelism may then be achieved by reducing the
vector register with a tree, i.e., pairs of dements are summed;
then pairs of these results are summed; etc.
An example of reduction recognition is:

for (i=0; i<N; i++)
s=s+afi];

for (i=0; i<N; i=i+64)
tmp[0:63] = tmp[0:63] + a[i:i+63];
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-continued

for (i=0; i<64;i++)
s =5 + tmpl[i];

Loop Pushing/Loop Embedding

A loop pushing/loop embedding transformation may
replace a call in a loop body by the loop in the called function.
It may be an interprocedural optimization. It may allow the
parallelization of the loop nest and eliminate the overhead
caused by the procedure call. Loop distribution can be used in
conjunction with loop pushing.

An example of loop pushing is:

for (i=0; i<N; i++)
1(x,0);

2(x)

void f2(int* a){
for (i=0; i<N; i++)
ai] = a[i] +¢c;

void f(int* a, int j){
afj] =a[j]+c¢;
}

Procedure Inlining

A procedure inlining transformation replaces a call to a
procedure by the code of the procedure itself. It is an inter-
procedural optimization. It allows a loop nest to be parallel-
ized, removes overhead caused by the procedure call, and can
improve locality.

An example of procedure inlining is:

for (i=0; i<N; i++) for(i=0; i<N; i++)

f(a,0); ali] = a[i] + ¢;
void f(int* x, int j){

x[] =x[]+¢;
}

Statement Reordering

A statement reordering transformation schedules instruc-
tions of the loop body to modify the data dependence graph
and enable vectorization.

An example of statement reordering is:

for (i=0; i<N; i++){ for(i=0; i<Nj i++){
afi] = b[i] * 2; c[i] =a[i-1] - 4;
c[i] = afi-1] - 4; a[i] =b[i] * 2;
¥
Software Pipelining

A software pipelining transformation may parallelize a
loop body by scheduling instructions of different instances of
the loop body. It may be a powerful optimization to improve
instruction-level parallelism. It can be used in conjunction
with loop unrolling. In the example below, the preload com-
mands can be issued one after another, each taking only one
cycle. This time is just enough to request the memory areas. It
is not enough to actually load them. This takes many cycles,
depending on the cache level that actually has the data.
Execution of a configuration behaves similarly. The configu-
ration is issued in a single cycle, waiting until all data are
present. Then the configuration executes for many cycles.
Software pipelining overlaps the execution of a configuration
with the preloads for the next configuration. This way, the
XPP array can be kept busy in parallel to the L.oad/Store unit.
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An example of software pipelining is:

Issue Cycle Command

XPPPreloadConfig (CFG1);

for (i=0; i<100; ++i){
XPPPreload (2,a+10%*1,10);
XPPPreload (5,b+20%1,20);

//delay

R I N S

XPPExecute (CFG1);

Issue Cycle Command
Prologue XPPPreloadConfig (CFG1);
XPPPreload (2,a,10);
XPPPreload (5,b,20);
// delay
for (i=1; i<100; ++i){
XPPExecute (CFG1);
XPPPreload (2,a+10%1,10);
XPPPreload (5,b+20%*i,20);

Kernel

E e

XPPExecute (CFG1);
Epilog // delay

Vector Statement Generation

A vector statement generation transformation may replace
instructions by vector instructions that can perform an opera-
tion on several data in parallel.

An example of vector statement generation is:

for (i=0; i<N; i++) [0:N] = b[0:N];
[i] = b[i];

Data-Layout Optimizations

Optimizations may modify the data layout in memory in
order to extract more parallelism or prevent memory prob-
lems like cache misses. Examples of such optimizations are
scalar privatization, array privatization, and array merging.
Scalar Privatization

A scalar privatization optimization may be used in multi-
processor systems to increase the amount of parallelism and
avoid unnecessary communications between the processing
elements. If a scalar is only used like a temporary variable in
a loop body, then each processing element can receive a copy
of it and achieve its computations with this private copy.

An example of scalar privatization is:

for (i=0; i<=N; i++){
¢ =b[i];
afi] =a[i] +¢;

Array Privatization

An array privatization optimization may be the same as
scalar privatization except that it may work on arrays rather
than on scalars.
Array Merging

An array merging optimization may transform the data
layout of arrays by merging the data of several arrays follow-
ing the way they are accessed in a loop nest. This way,
memory cache misses can be avoided. The layout of the
arrays can be different for each loop nest. The example code
for array merging presented below is an example of a cross-
filter, where the accesses to array ‘a’ are interleaved with
accesses to array ‘b’. FIG. 30 illustrates a data layout of both
arrays, where blocks of ‘a’ 2300 (the dark highlighted por-
tions) are merged with blocks of ‘b’ 2302 (the lighter high-
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lighted portions). Unused memory space 2304 is represented
by the white portions. Thus, cache misses may be avoided as
data blocks containing arrays ‘a’ and ‘b’ are loaded into the
cache when getting data from memory. More details can be
found in Daniela Genius & Sylvain Lelait, “A Case for Array
Merging in Memory Hierarchies,” Proceedings of the 9"
International Workshop on Compilers for Parallel Comput-
ers, CPC '01 (June 2001).

for (j=1; j<=N-1; i++)
for (j=1; j<=N; j++)
b[i][j] = 0.25*(a[i-1][j]+a[i]+[j-1]+a[i+1][j]+a[i][j+1]);

Example of Application of the Optimizations

In accordance with that which is discussed above, it will be
appreciated that a lot of optimizations can be performed on
loops before and also after generation of vector statements.
Finding a sequence of optimizations that would produce an
optimal solution for all loop nests of a program is still an area
of research. Therefore, in an embodiment of the present
invention, a way to use these optimizations is provided that
follows a reasonable heuristic to produce vectorizable loop
nests. To vectorize the code, the Allen-Kennedy algorithm,
that uses statement reordering and loop distribution before
vector statements are generated, can be used. It can be
enhanced with loop interchange, scalar expansion, index set
splitting, node splitting, loop peeling. All these transforma-
tions are based on the data dependence graph. A statement can
be vectorized if it is not part of a dependence cycle. Hence,
optimizations may be performed to break cycles or, if not
completely possible, to create loop nests without dependence
cycles.

The whole process may be divided into four majors steps.
First, the procedures may be restructured by analyzing the
procedure calls inside the loop bodies. Removal of the pro-
cedures may then be tried. Then, some high-level dataflow
optimizations may be applied to the loop bodies to modify
their control-flow and simplify their code. The third step may
include preparing the loop nests for vectorization by building
perfect loop nests and ensuring that inner loop levels are
vectorizable. Then, optimizations can be performed that tar-
get the architecture and optimize the data locality. It should
also be noted that other optimizations and code transforma-
tions can occur between these different steps that can also
help to further optimize the loop nests.

Hence, the first step may apply procedure inlining and loop
pushing to remove the procedure calls of the loop bodies.
Then, the second step may include loop-invariant code
motion, loop unswitching, strength reduction and idiom rec-
ognition. The third step can be divided in several subsets of
optimizations. Loop reversal, loop normalization and if-con-
version may be initially applied to get normalized loop nests.
This may allow building of the data dependency graph. Then,
if dependencies prevent the loop nest to be vectorized, trans-
formations may be applied. For instance, if dependencies
occur only on certain iterations, loop peeling or loop splitting
may be applied. Node splitting, loop skewing, scalar expan-
sion or statement reordering can be applied in other cases.
Then, loop interchange may move inwards the loop levels
without dependence cycles. A goal is to have perfectly nested
loops with the loop levels carrying dependence cycles as
much outwards as possible. Then, loop fusion, reduction rec-
ognition, scalar replacement/array contraction, and loop dis-
tribution may be applied to further improve the following
vectorization. Vector statement generation can be performed
at last using the Allen-Kennedy algorithm for instance. The
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last step can include optimizations such as loop tiling, strip-
mining, loop unrolling and software pipelining that take into
account the target processor.

The number of optimizations in the third step may be large,
but it may be that not all of them are applied to each loop nest.
Following the goal of the vectorization and the data depen-
dence graph, only some of them are applied. Heuristics may
be used to guide the application of the optimizations that can
be applied several times if needed. The following code is an
example of this:

void f(int** a, int** b, int *c, int i, int j){

a[i]j] = a[i] [j-1] - bi+1][-1];

void g(int* a , int* ¢, int i){
afi] = c[i] + 2;

for(i=0; i<Nj i++){
for (j=1; j<9; j=j++){
if (k>0)
fla, b, 1, j);
else
gd, ¢, j);

d[i] = d[i +1] + 2;

for (i=0; i<N; i++)
afi][i] = b[i] + 3;

The first step will find that inlining the two procedure calls
is possible. Then loop unswitching can be applied to remove
the conditional instruction of the loop body. The second step
may begin by applying loop normalization and analyses of the
data dependence graph. A cycle can be broken by applying
loop interchange as it is only carried by the second level. The
two levels may be exchanged so that the inner level is vector-
izable. Before that or also after, loop distribution may be
applied. Loop fusion can be applied when the loop on i is
pulled out of the conditional instruction by a traditional
redundant code elimination optimization. Finally, vector
code can be generated for the resulting loops.

In more detail, after procedure inlining, the following may
be obtained:

for (i=0; i<N; i++){
for (j=1; j<9; j=j++)
if (k>0)
a[i](j] =ali][j-1] - b[i+1][j-1];
else
dfil =c[j] +2;

d[i] = d[i+1] + 2;

for (i=0; i<N; i++)
afi][i] = b [i] +3;

After loop unswitching, the following may be obtained:

if (k>0)
for (i=0; i<N; i++){
for (j=1; j<9; j=j++)
a[i](j] =a[i][j-1] - b[i+1][j-1];
d[i] = d[i+1] + 2;
¥

else
for (i=0; i<N; i++){
for (j=1; j<9; j=j++)
dfil=c[j] + %
d[i] = d[i+1] + 2
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-continued

for (i=0; i<N; i++)
a[i][i] = b[i] +3;

After loop normalization, the following may be obtained:

if (I0)
for (i=0; i<N; i++){
for (j=0; j<8; j=j++)
a[i][j+1] = ali][j] - b[i+1][j];
d[i] = d[i+1] + 2;

else
for (i=0; i<N; i++){
for (j=0; j<8; j = j++)
d[j] =c[j+1]1+2;
d[i] = d[i+1] + 2;

for (i=0; i<N; i++)
a[i][i] = b[i] +3;

After loop distribution and loop fusion, the following may
be obtained:

if (k>0)
for(i=0; i<N; i++)
for (j=0; j<8; j=j++)
afilli+1] = afil(i] - bl+11[il;
else
for (i=0; i<N; i++)
for (j=0; j<8; j=j++)

d[j] =c[j+1]1+2;
for (i=0; i<N; i++){
d[i] = d[i+1] + 2
a[i][i] =b[i] +3;

After loop interchange, the following may be obtained:

if (k>0)
for (j=0; j<8; j=j++)
for (i=0; i<N; i++)
a[i][j+1] = ali][j] - b[i+1][j];
else
for (i=0; i<N; i++)
for (j=0; j<8; j=j++)

d[j] =c[j+1]1+2;
for (i=0; i<N; i++){
d[i] = d[i+1] + 2
a[i][i] =b[i] +3;

After vector code generation, the following may be
obtained:

if (k>0)
for (j-0; j<8; j=j++)
a[0:N-1][j+1] = a[0:N-1][j] - b[0:N][j];
else
for (i=0; i<N; i++)
d[0:8] =¢[1:9] + 2;
d[0:N-1] =d[1:N] + 2;
a[0:N-1][0:N-1] = b[0:N] + 3;

Compiler Specification for the Pact XPP

A cached RISC-XPP architecture may exploit its full
potential on code that is characterized by high data locality
and high computational effort. A compiler for this architec-
ture has to consider these design constraints. The compiler’s
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primary objective is to concentrate computational expensive
calculations to innermost loops and to make up as much data
locality as possible for them.

The compiler may contain usual analysis and optimiza-
tions. As interprocedural analysis, e.g., alias analysis, are
especially useful, a global optimization driver may be neces-
sary to ensure the propagation of global information to all
optimizations. The way the PACT XPP may influence the
compiler is discussed in the following sections.

Compiler Structure

FIG. 31 provides a global view of the compiling procedure
and shows main steps the compiler may follow to produce
code for a system containing a RISC processor and a PACT
XPP. The next sections focus on the XPP compiler itself, but
first the other steps are briefly described.

Code Preparation

Code preparation may take the whole program as input and
can be considered as a usual compiler front-end. It may pre-
pare the code by applying code analysis and optimizations to
enable the compiler to extract as many loop nests as possible
to be executed by the PACT XPP. Important optimizations are
idiom recognition, copy propagation, dead code elimination,
and all usual analysis like dataflow and alias analysis.
Partitioning

Partitioning may decide which part of the program is
executed by the host processor and which part is executed by
the PACT XPP.

A loop nest may be executed by the host in three cases:

if the loop nest is not well-formed,

if the number of operations to execute is not worth being

executed on the PACT XPP, or

if it is impossible to get a mapping of the loop nest on the

PACT XPP.

A loop nest is said to be well-formed if the loop bounds and
the step of all loops are constant, the loop induction variables
are known and if there is only one entry and one exit to the
loop nest.

Another problem may arise with loop nests where the loop
bounds are constant but unknown at compile time. Loop tiling
may allow for overcoming this problem, as will be described
below. Nevertheless, it could be that it is not worth executing
the loop nest on the PACT XPP if the loop bounds are too low.
A conditional instruction testing if the loop bounds are large
enough can be introduced, and two versions of the loop nest
may be produced. One would be executed on the host proces-
sor, and the other on the PACT XPP when the loop bounds are
suitable. This would also ease applications of loop transfor-
mations, as possible compensation code would be simpler
due to the hypothesis on the loop bounds.

RISC Code Generation and Scheduling

After the XPP compiler has produced NML code for the
loops chosen by the partitioning phase, the main compiling
process may handle the code that will be executed by the host
processor where instructions to manage the configurations
have been inserted. This is an aim of the last two steps:

RISC Code Generation and

RISC Code Scheduling.

The first one may produce code for the host processor and
the second one may optimize it further by looking for a better
scheduling using software pipelining for instance.

XPP Compiler for Loops

FIG. 32 illustrates a detailed architecture and an internal
processing of the XPP Compiler. It is a complex cooperation
between program transformations, included in the XPP Loop
optimizations, a temporal partitioning phase, NML code gen-
eration and the mapping of the configuration on the PACT
XPP.
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First, loop optimizations targeted at the PACT XPP may be
applied to try to produce innermost loop bodies that can be
executed on the array of processors. If this is the case, the
NML code generation phase may be called. If not, then tem-
poral partitioning may be applied to get several configura-
tions for the same loop. After NML code generation and the
mapping phase, it can also happen that a configuration will
not fit on tike PACT XPP. In this case, the loop optimizations
may be applied again with respect to the reasons of failure of
the NML code generation or of the mapping. If this new
application of loop optimizations does not change the code,
temporal partitioning may be applied. Furthermore, the num-
ber of attempts for the NML Code Generation and the map-
ping may be kept track of. If too many attempts are made and
a solution is still not obtained, the process may be broken and
the loop nest may be executed by the host processor.
Temporal Partitioning

Temporal partitioning may split the code generated for the
PACT XPP into several configurations if the number of opera-
tions, i.e., the size of the configuration, to be executed in a
loop nest exceeds the number of operations executable in a
single configuration. This transformation is called loop dis-
severing. See, for example, Jodo M. P. Cardoso & Markus
Weinhardt, “XPP-VC: A C Compiler with Temporal Parti-
tioning for the PACT-XPP Architecture,” Proceedings of the
12 International Conference on Field-Programmable Logic
and Applications, FPL 2002, 2438 LNCS, 864-874 (2002).
These configurations may be then integrated in a loop of
configurations whose number of execution corresponds to the
iteration range of the original loop.

Generation of NML Code

Generation of NML code may take as input an intermediate
form of the code produced by the XPP Loop optimizations
step, together with a datatlow graph built upon it. NML code
can then be produced by using tree or DAG-pattern matching
techniques.

Mapping Step

A mapping step may take care of mapping the NML mod-
ules onthe PACT XPP by placing the operations on the AL.Us,
FREGs, and BREGs, and routing the data through the buses.
XPP Loop Optimizations Driver

A goal of loop optimizations used for the PACT XPP is to
extract as much parallelism as possible from the loop nests in
order to execute them on the PACT XPP by exploiting the
ALU-PAEs as effectively as possible and to avoid memory
bottlenecks with the IRAMs. The following sections explain
how they may be organized and how to take into account the
architecture for applying the optimizations.

Organization of the System

FIG. 33 provides a detailed view of the XPP loop optimi-
zations, including their organization. The transformations
may be divided in six groups. Other standard optimizations
and analysis may be applied in-between. Each group could be
called several times. Loops over several groups can also occur
ifneeded. The number of iterations for each driver loop can be
of constant value or determined at compile time by the opti-
mizations themselves, (e.g., repeat until a certain code quality
is reached). In the first iteration of the loop, it can be checked
if loop nests are usable for the PACT XPP. It is mainly
directed to check the loop bounds etc. For instance, if the loop
nest is well-formed and the data dependence graph does not
prevent optimization, but the loop bounds are unknown, then,
in the first iteration loop, tiling may be applied to get an
innermost that is easier to handle and can be better optimized,
and in the second iteration, loop normalization, if conversion,
loop interchange and other optimizations can be applied to
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effectively optimize the inner-most loops for the PACT XPP.
Nevertheless, this has not been necessary until now with the
examples presented below.

With reference to FIG. 33, Group I may ensure that no
procedure calls occur in the loop nest. Group II may prepare
the loop bodies by removing loop-invariant instructions and
conditional instruction to ease the analysis. Group III may
generate loop nests suitable for the data dependence analysis.
Group IV may contain optimizations to transform the loop
nests to get data dependence graphs that are suitable for
vectorization. Group V may contain optimizations that ensure
that the innermost loops can be executed on the PACT XPP.
Group VI may contain optimizations that further extract par-
allelism from the loop bodies. Group VII may contain opti-
mizations more towards optimizing the usage of the hardware
itself.

In each group, the application of the optimizations may
depend on the result of the analysis and the characteristics of
the loop nest. For instance, it is clear that not all transforma-
tions in Group IV are applied. It depends on the data depen-
dence graph computed before.

Loop Preparation

The optimizations of Groups I, II and I1I of the XPP com-
piler may generate loop bodies without procedure calls, con-
ditional instructions and induction variables other than loop
control variables. Thus, loop nests, where the innermost loops
are suitable for execution on the PACT XPP, may be obtained.
The iteration ranges may be normalized to ease data depen-
dence analysis and the application of other code transforma-
tions.

Transformation of the Data Dependence Graph

The optimizations of Group IV may be performed to obtain
innermost loops suitable for vectorization with respect to the
data dependence graph. Nevertheless, a difterence with usual
vectorization is that a dependence cycle, which would nor-
mally prevent any vectorization of the code, does not prevent
the optimization of a loop nest for the PACT XPP. Ifa cycle is
due to an anti-dependence, then it could be that it will not
prevent optimization of the code as stated in Markus Wein-
hardt & Wayne Luk, “Pipeline Vectorization,” IEEE Trans-
actions on Computer-Aided Design of integrated Circuits and
Systems, 20(2):234-248 (February 2001). Furthermore,
dependence cycles will not pre-vent vectorization for the
PACT XPP when it consists only of'a loop-carried true depen-
dence on the same expression. If cycles with distance k occur
in the data dependence graph, then this can be handled by
holding k values in registers. This optimization is of the same
class as cycle shrinking.

Nevertheless, limitations due to the dependence graph
exist. Loop nests cannot be handled if some dependence
distances are not constant or unknown. If only a few depen-
dencies prevent the optimization of the whole loop nest, this
could be overcome by using the traditional vectorization
algorithm that sorts topologically the strongly connected
components of the data dependence graph (statement reor-
dering), and then applying loop distribution. This way, loop
nests, which can be handled by the PACT XPP and some by
the host processor, can be obtained.

Influence of the Architectural Parameters

Some hardware specific parameters may influence the
application of the loop transformations. The number of opera-
tions and memory accesses that a loop body performs may be
estimated at each step. These parameters may influence loop
unrolling, strip-mining, loop tiling and also loop interchange
(iteration range).

The table below lists the parameters that may influence the
application of the optimizations. For each of them, two data
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are given: a starting value computed from the loop and a
restriction value which is the value the parameter should
reach or should not exceed after the application of the opti-
mizations. Vector length depicts the range of the innermost
loops, i.e., the number of elements of an array accessed in the
loop body. Reused data set size represents the amount of data
that must fit in the cache. I/O IRAMs, ALU, FREG, BREG
stand for the number of IRAMs, ALUs, FREGs, and BREGs,
respectively, of the PACT XPP. The dataflow graph width
represents the number of operations that can be executed in
parallel in the same pipeline stage. The dataflow graph height
represents the length of the pipeline. Configuration cycles
amounts to the length of the pipeline and to the number of
cycles dedicated to the control. The application of each opti-
mization may

decrease a parameter’s value (-),

increase a parameter’s value (+),

not influence a parameter (id), or

adapt a parameter’s value to fit into the goal size (make fit).

Furthermore, some resources must be kept for control in
the configuration. This means that the optimizations should
not make the needs exceed more than 70-80% each resource.

Parameter Goal Starting Value

Vector length
Reused data set size

IRAM size (256 words)
Approx. cache size

Loop count
Algorithm analysis/loop
sizes

/O IRAMs PACT size (16) Algorithm inputs +
outputs

ALU PACT size (<64) ALU opcode estimate

BREG PACT size (<80) BREG opcode estimate

FREG PACT size (<80) FREG opcode estimate

Data flow graph High Algorithm data flow

width graph

Data flow graph Small Algorithm data flow

height graph

=command line
parameter

Configuration cycles Algorithm analysis

Additional notations used in the following descriptions are
as follows. n is the total number of processing elements avail-
able, r is the width of the dataflow graph, in is the maximum
number of input values in a cycle, and out is the maximum
number of output values possible in a cycle. On the PACT
XPP, n is the number of ALUs, FREGs and BREGs available
for a configuration, r is the number of ALUs, FREGs and
BREGs that can be started in parallel in the same pipeline
stage, and in and out amount to the number of available
IRAMs. As IRAMs have 1 input port and 1 output port, the
number of IRAMs yields directly the number of input and
output data.

The number of operations of a loop body may be computed
by adding all logic and arithmetic operations occurring in the
instructions. The number of input values is the number of
operands of the instructions regardless of address operations.
The number of output values is the number of output operands
of'the instructions regardless of address operations. To deter-
mine the number of parallel operations, input and output
values, and the datatlow graph must be considered. The
effects of each transformation on the architectural parameters
are now presented in detail.

Loop Interchange

Loop interchange may applied when the innermost loop
has a too narrow iteration range. In that case, loop interchange
may allow for an innermost loop with a more profitable itera-
tion range. It can also be influenced by the layout of the data
in memory. It can be profitable to data locality to interchange
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two loops to get a more practical way to access arrays in the
cache and therefore prevent cache misses. It is of course also
influenced by data dependencies as explained above.

Parameter Effect
Vector length +
Reused data set size make fit
O IRAMs id

10 ALU id
BREG id
FREG id
Data flow graph width id
Data flow graph height id
Configuration cycles -

15

Loop Distribution
Loop distribution may be applied if a loop body is too big
to fit on the PACT XPP. A main effect of loop distribution is
to reduce the processing elements needed by the configura-
20 tion. Reducing the need for IRAMs can only be a side effect.

Parameter Effect
25 Vector length id
Reused data set size id
VO IRAMs make fit
ALU make fit
BREG make fit
FREG make fit
Data flow graph width -
30 Data flow graph height -
Configuration cycles -
Loop Collapsing
Loop collapsing can be used to make the loop body use
3 more memory resources. As several dimensions are merged,
the iteration range is increased and the memory needed is
increased as well.
40 Parameter Effect
Vector length +
Reused data set size +
/O IRAMs +
ALU id
45 BREG id
FREG id
Data flow graph width +
Data flow graph height +
Configuration cycles +
50 .
Loop Tiling
Loop tiling, as multi-dimensional strip-mining, is influ-
enced by all parameters. It may be especially useful when the
iteration space is by far too big to fit in the IRAM, or to
55 guarantee maximum execution time when the iteration space
is unbounded. See the discussion below under the heading
“Limiting the Execution Time of a Configuration.” It can then
make the loop body fit with respect to the resources of the
PACT XPP, namely the IRAM and cache line sizes. The size
60 of the tiles for strip-mining and loop tiling can be computed
as:
tile size=resources available for the loop body/re-
sources necessary for the loop body.
The resources available for the loop body are the whole
65 resources of the PACT XPP for this configuration. A tile size

can be computed for the data and another one for the process-
ing elements. The final tile size is then the minimum between
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these two. For instance, when the amount of data accessed is
larger than the capacity of the cache, loop tiling may be Parameter Effect
aﬁ)})he;ﬂi ac}for}ii:éth; It)lIl)e following example code for loop Veotor length N
tiling for the . Reused data set size id
5 /O IRAMs id
ALU id
for (i=0; i<=1048576; i++) for (i=0; i<=1048576; i+= CACHE_SIZE) BREG id
<loop body> for (j=0; j<CACHE_SIZE; FREG id
j+=IRAM_SIZE) Data flow graph width +
for (k=0; k<IRAM_SIZE; k++) Data flow graph height -
<tiled loop body> 10 Configuration cycles id
Loop Unrolling
Loop unrolling, loop collapsing, loop fusion and loop dis-
Parameter Effect s tribution may be influenced by the number of operations of
Vector length make fit the body of the loop nF:st and the numbpr of de}ta inputs and
Reused data set size make fit outputs of these operations, as they modify the size of the loop
K%IJRAMS ?g- body. The number of operations should always be smaller
BREG i d than n, and the number of input and output data should always
FREG id 5o be smaller than in and out.
Data flow graph width +
Data flow graph height +
Configuration cycles + Parameter Effect
. .. Vector length id
Str 1p-.M1n1.ng 25 Reused data set size id
Strip-mining may be used to make the amount of memory /O IRAMs +
accesses of the innermost loop fit with the IRAMs capacity. ALU +
The processing elements do not usually represent a problem ?I;Rgg ::
as the PACT XPP ha.s 64 ALU-PAEs which should be suffi- Data flow graph width M
cient to execute any single loop body. Nevertheless, the num- 10 Data flow graph height +
ber of operations can be also taken into account the same way Configuration cycles +
as the data.
Unroll-and-Jam
Unroll-and-Jam may include unrolling an outer loop and
Parameter Effect . . .
35 then merging the inner loops. It must compute the unrolling
Vector length- make fit degree u with respect to the number of input memory accesses
Egu%e{iiitsa setsize ;g m and output memory accesses p in the inner loop. The
ALU id following inequality must hold: u*min;in u*p=out. More-
BREG id over, the number of operations of the new inner loop must also
FREG id 40 fit on the PACT XPP.
Data flow graph width +
Data flow graph height -
Configuration cycles -
Parameter Effect
LOOp Fusion 45 Vector length . id
Loop fusion may be applied when a loop body does not use Reused data set size *
P Yy beapp p body do O IRAMs +
enough resources. In this case, several loop bodies can be ALU "
merged to obtain a configuration using a larger part of the BREG +
available resources. FREG , +
Data flow graph width id
50 Data flow graph height +
Configuration cycles +
Parameter Effect
Vector length id Optimizations Towards Hardware Improvements
Eguff{iiitsa setsize lf At this step other optimizations, specific to the PACT XPP,
ALU + 3 can be made. These optimizations deal mostly with memory
BREG + problems and datatlow considerations. This is the case of shift
FREG . + register synthesis, input data duplication (similar to scalar
Data flow graph width id privatization), or loop pipelining.
Data flow graph height: + . . .
Configuration cycles + 60 Shift Re.gISter .SyntheSIS . o .
A shift register synthesis optimization deals with array
accesses that occur during the execution of a loop body. When
Scalar Replacement several values of an array are alive for different iterations, it
The amount of memory needed by the loop body shgulq can be convenient to store them in registers, rather than
always fit in the IRAMSs. Due to a scalar replacement Optlml- accessing memory each time they are needed. As the same
zation, some input or output data represented by array refer- 65 value must be stored in different registers depending on the

ences that should be stored in IRAMs may be replaced by
scalars that are either stored in FREGs or kept on buses.

number of iterations it is alive, a value shares several registers
and flows from a register to another at each iteration. It is
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similar to a vector register allocated to an array access with
the same value for each element. This optimization is per-
formed directly on the dataflow graph by inserting nodes
representing registers when a value must be stored in a reg-
ister. In the PACT XPP, it amounts to storing it in a data
register. A detailed explanation can be found in Markus Wein-
hardt & Wayne Luk, “Memory Access Optimization for
Reconfigurable Systems,” I[EEE Proceedings Computers and
Digital Techniques, 48(3) (May 2001).

Shift register synthesis may be mainly suitable for small to
medium amounts of iterations where values are alive. Since
the pipeline length increases with each iteration for which the
value has to be buffered, the following method is better suited
for medium to large distances between accesses in one input
array.

Nevertheless, this method may work very well for image

processing algorithms which mostly alter a pixel by analyz-
ing itself and its surrounding neighbors.

Parameter Effect
Vector length +
Reused data set size id
O IRAMs id
ALU id
BREG id
FREG id
Data flow graph width +
Data flow graph height -
Configuration cycles id

Input Data Duplication

An input data duplication optimization is orthogonal to
shift register synthesis. If different elements of the same array
are needed concurrently, instead of storing the values in reg-
isters, the same values may be copied in different IRAMs. The
advantage against shift register synthesis is the shorter pipe-
line length, and therefore the increased parallelism, and the
unrestricted applicability. On the other hand, the cache-
IRAMM bottle-neck can affect the performance of this solu-
tion, depending on the amounts of data to be moved. Never-
theless, it is assumed that cache IRAM transfers are
negligible to transfers in the rest of the memory hierarchy.

Parameter Effect

Vector length +
Reused data set size id
/O IRAMs id
ALU id
BREG id
FREG id
Data flow graph width +
Data flow graph height -
Configuration cycles id
Loop Pipelining

A loop optimization pipelining optimization may include
synchronizing operations by inserting delays in the datatlow
graph. These delays may be registers. For the PACT XPP, it
amounts to storing values in data registers to delay the opera-
tion using them. This is the same as pipeline balancing per-
formed by xmap.
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Parameter Effect
Vector length +
Reused data set size id
/O IRAMs id
ALU id
BREG id
FREG id
Data flow graph width +
Data flow graph height -
Configuration cycles +

Tree Balancing

A tree balancing optimization may include balancing the
tree representing the loop body. It may reduce the depth of the
pipeline, thus reducing the execution time of an iteration, and
may increase parallelism.

Parameter Effect
Vector length +
Reused data set size id
/O IRAMs id
ALU id
BREG id
FREG id
Data flow graph width +

Data flow graph height -
Configuration cycles -

Limiting the Execution Time of a Configuration

The execution time of a configuration must be controlled.
This is ensured in the compiler by strip-mining and loop tiling
that take care that not more input data than the IRAM’s
capacity come in the PACT XPP in a cycle. This way the
iteration-range of the innermost loop that is executed on the
PACT XPP is limited, and therefore its execution time. More-
over, partitioning ensures that loops, whose execution count
can be computed at run time, are going to be executed on the
PACT XPP. This condition is trivial for-loops, but for while-
loops, where the execution count cannot be determined stati-
cally, a transformation exemplified by the code below can be
applied. As a result, the inner for-loop can be handled by the
PACT XPP.

while (ok){ while (ok)
<loop body> for (i=0; i<100 && ok; i++){
<loop body>

Case Studies 3x3 Edge Detector
Original Code

The following is source code:

#define VERLEN 16
#define HORLEN 16
main( ){
int v, h, inp;
int p1 [VERLEN][HORLEN];
int p2[VERLEN][HORLEN];
int htmp, vtmp, sum;
for(v=0; v<VERLEN; v++)
for(h=0; h<HORLEN; h++){
scanf(“%d”, &pl[v][h]);
p2[v[h] = 0;

/ /loop nest 1

/ /read input pixels to pl
/ /initialize p2
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-continued

for(v=0; v<=VERLEN-3; v++){
for(h=0; h<=HORLEN-3; h++) {

/ /loop nest 2

htmp = (pL{v+2][h] - pl[v][h]) +
(p1[v+2][h+2] - p1[v][h+2]) +
2 * (p1[v+2][h+1] -
1v]h+1]);
if(htmp < 0)
htmp = -htmp;
vimp = (pL[vI[h+2] - plv][h]) +
(p1[v+2][h+2] - p1[v+2][h]) +
2 * (p1[v+1][h+2] -
pl[v+1][h]);
if (vtmp < 0)
vtmp = —vtmp;
sum = htmp + vtmp;
if (sum > 255)
sum = 255;
p2[v+1][h+1] = sum;
¥
for(v=0; v<VERLEN; v++) / /loop nest 3

for(h=0; h<HORLEN h+)

printf(* %d\n , p2[v][h]); / /print output pixels from p2

Preliminary Transformations
Interprocedural Optimizations

The first step normally invokes interprocedural transfor-
mations like function dining and loop pushing. Since no
procedure calls are within the loop body, these transforma-
tions are not applied to this example.

Partitioning

The partitioning algorithm chooses which code runs on the
RISC processor and which code runs on the XPP. Since only
inner loops are considered to run on the XPP, the basic blocks
are annotated with the loop nest depth. Thus, basic blocks
which are not in a loop are separated out. Furthermore, func-
tion calls within a loop body prevent a loop to be considered
for running on the XPP.

In our benchmark, the loop nests 1 and 3 are marked as to
run on the RISC host because of the function call. In the
following sections they are not considered any further.

It is to say that at this compilation stage it is not predictable
if the remaining loop nests can be synthesized for the XPP.
Justthe ones which definitely cannot run on it were separated.
Others may follow, since running the code on the RISC CPU
is always the reassurance in this strategy.

Loop Analysis and Normalization

The code upon has already normalized loops. Neverthe-
less, it is more likely that human written code would be
approximately as follows:

for(v=1; v<VERLEN - 1; v++){
for(h=1; h<HORLEN - 1; h++){

htmp = (p1[v+1][h-1] - p1[v-1][h-1]) +
(p1[v+1][h+1] — p1[v-1][h+1]) +
2% (pl[v+1] 4] - p1{v-1]{h]);
if(htmp < 0)
htmp = -htmp;
vtmp = (p1[v-1][h+1] = p1[v-1][h-1]) +
(p1[v+1][h+1] - p1[v+1][h-1]) +
2% (pl[v][h+1] - pl[v][h-1]);
if(vtmp < 0)
vtmp = —vtmp;
sum = htmp + vtmp;
if(sum > 255)
sum = 255;
p2[v+1][h+1] = sum;
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Although seen at first sight by a human reader, it is not
obvious for the compiler that the loop is well formed. There-
fore, normalizing of the loop is attempted.

If the original loop induction variable is called i with the
increment value and lower and upper loop bounds/and u,
respectively, then the normalized loop with the induction
variable 1' and the upper bound u' (the lower bound 1'is O by
definition) is transformed as follows:

The upper bound calculates to u'=(u-1)/s.

All occurrences of 1 are replaced by 1+i'*s.

Applied to the code above, the loop statement for (v=1;
v<VERLEN-1; v++) with the lower bound v1=1, the upper
bound vu=14 (<15 means<=14 in integer arithmetic) and the
increment vs=1 transforms to
for(vn=0; va<=(vu-v1)/vs; vn++)
or simplified
for(vn=0; va<=13; vn++)

The ‘h-loop’ is transformed equally, issuing the original
code.

Idiom Recognition

In the second step, idiom recognition finds the abs( ) and
min( ) structures in the loop body. Note that although the XPP
has no abs opcode, it can easily be synthesized and should
therefore be produced to simplify the internal representation.
(Otherwise, if-conversion has to handle this case which
increases the complexity.)

Therefore, the code after idiom recognition is approxi-
mately as follows (abs( ) and min( ) are compiler known
functions which are directly mapped to XPP opcodes or pre-
defined NML modules):

for(v=0; v<=16-3; v++){
for(h=0; h<=16--3; h++){

htmp = (p1[v+2][h] - pl h D+
(p1[v+2][h+2] — p1[v][h+2]) +
2% (pl[v+2][h+1] - pl[v][h+1]);
htmp = abs(htmp);
vtmp = (p1[v][h+2] - p1[v][h]) +
(pl V+2 [h+2] pl [v+2] [h]) +
2% (p1[v+1][h+2] - p1[v+1][h]);
vtmp = abs(vtmp);
sum = min(htmp + vtmp, 255);
p2[v+1][h+1] = sum;
¥
¥
Dependency Analysis
for(v=0; v<=16-3;
v+){
for(h=0; h<=16-3;
h+){
S1 htmp = (p1[v+2][h] - p1[v][h]) +
(p1[v+2][h+2] -
pL[v][h+2]) +
2% (pl[v+2][h+1] -
[vI[h+1]);
S2 htmp = abs(htmp);
S3 vtmp = (p1[v][h+2] - p1[v][h]) +
(p1[v+2][h+2] -
pl[v+2][h]) +
2% (p1 v+1][h+2] -
pl[v+1][h]);
sS4 vtmp = abs(vtmp);
S5 sum = min(htmp +
vtmp, 255);
S6 p2[v+1][h+1] = sum;
¥
¥
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There are no loop carried dependencies which prevent
pipeline vectorization. The loop independent scalar depen-
dencies do not prevent pipeline vectorization since the trans-
formation does not disturb the order of reads and writes.
Furthermore, forward expression substitution/dead code
elimination will remove the scalars completely.

Pre Code Generation Transformations
Forward Expression Substitution/Dead Code Elimination

The lack of uses of htmp, vtmp and sum after the loop nest
allows forward expression substitution along with dead code
elimination to place the whole calculation into one statement.

p2[v+1][h+1] = min(abs((p1[v+2][h1] - p1[v][h]) +
(p1[v+2][h+2] p1[v][h+2]) +
2 * (p1[v+2][h+1] - p1[v][h+1])) +
abs((p1[v][h+2] - p1[v][h]) +
(p1[v+2][h+2] - p1[v+2][h]) +
2 * (p1[v+1][h+2] - p1[v+1][h])), 255);

The scalar accesses then disappear completely.
Mapping to IRAMs

The array accesses are mapped to IRAMs. At this stage the
IRAM numbers are chosen arbitrarily. The actual mapping to
XPP IRAMs is done later.

Therefore, pl[v+x][h+y] and p2[v+X][h+y] are renamed
to iramNJy], (e.g., p1[v+2][h] to iram2[0]). Accordingly, the
code is

iram3[1] = mins(abs (iram2[0] - iram0[0]) +
(iram2[2] - iram0[2]) +
2% (iram2[1] - iramO[1]) +
abs (iram0[2] - iram0[0]) +
(iram2[2] - iram2[0]) +

2% (iram1[2] - iram1[0]), 255);

Tree Balancing

FIG. 34 shows an expression tree of an edge 3x3 inner loop
body. The visualized expression tree of FIG. 34 shows
another valuable optimization before matching the tree. Since
the depth of the tree determines the length of the synthesized
pipeline, another simplification can decrease this depth. In
both of the main sub trees, the operands of the commutative
add expressions can be interchanged to reduce the overall tree
depth. A resulting expression tree is shown in FIG. 35. In FIG.
35, one of the sub trees is shown before and after balancing.
The numbers represent the annotated maximum tree depth
from the node to its deepest child leaf node.
XPP Code Generation
Pipeline Synthesis

As already stated, the pipeline is synthesized by a dynamic
programming tree matcher. In contrast to sequential proces-
sors, it does not generate instructions and register references,
but PAE opcodes and port connections. FIG. 36 shows the
main calculation network of the edge 3x3 configuration. The
MULTI-SORT combination does the abs( ) calculation, while
the SORT does the min( ) calculation. The input data prepa-
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ration network is not shown in FIG. 36. FIG. 37 shows the
case of synthesized shift registers, while the variant with
duplicated input data simply includes an IRAM for each input
channel in FIG. 36. With respect to FIG. 37, there is one input
after the shift register synthesis. The leftmost input contains
pl[1[h], the middle one contains p1 [ ][h+1, and the rightmost
one contains pl [ |[h+2].

Although this is straight forward, there remains the ques-
tion how to access the different offsets of the vector register
accesses. Although the RAM-PAEs are dual ported, it is obvi-
ous that it is not possible to read different addresses concur-
rently.

Since it is not efficient to synthesize a configuration which
generates the different addresses sequentially and demulti-
plexes the read operands into different branches of the data
flow, other arrangements have to be made.

The two possibilities to access input data discussed above
under the heading “Optimizations Towards Hardware
Improvements” yield the following in RISC pseudo code and
XPP utilization. The pseudo code running on the RISC core is
approximately:

XPPPreload(config)
for(v=0; v<=16-3; v++){
XPPPreload(0, &pl[v], 16)
XPPPreload(l, &pl[v+1], 16)
XPPPreload(2, &pl[v+2], 16)
XPPPreloadClean(3, &p2[v+1], 16)
XPPExecute(config, IRAM(0), IRAM(1), IRAM(2), IRAM(3))

for shift register synthesis and approximately:

XPPPreload(config)

for(v=0; v<=16-3; v++){
XPPPreload(0, &pl[v], 16)
XPPPreload(l, &pl[v], 16)
XPPPreload(2, &pl[v], 16)
XPPPreload(3, &pl[v+1], 16)
XPPPreload(4, &pl[v+1], 16)
XPPPreload(5, &pl[v+2], 16)
XPPPreload(6, &pl[v+2], 16)
XPPPreload(7, &pl[v+2], 16)
XPPPreloadClean(3, &p2[v+1], 16)
XPPExecute(config, IRAM(0), IRAM(1), IRAM(2), IRAM(3),

IRAM(4), IRAM(5), IRAM(6), IRAM(7))

A4
A4

for data duplication.

The values for place & route and simulation are compared
in the following table. Note that a common RISC DSP with
two MAC units and hardware loop support needs about 4000
cycles for the same code. This comparison does not account
for cache misses. Furthermore, it is obvious that the number
of input values is very small in this example and the DSP
calculation time is proportional to that number. The XPP
performance on the other hand will improve with the number
of'input values. Therefore, the XPP performance will be more
impressive with bigger image sizes.

Value (shift Value (data
Parameter register synthesis) duplication)
Vector length 16 16
Reused data set size 256 256
O IRAMs 31+410=4 8I+10=9
ALU 27 21
BREG 21 (1 defined + 10 (1 defined +
20 route) 9 route)
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-continued

82

Value (shift Value (data

Parameter register synthesis) duplication)

FREg 22 (9 defined + 19 (3 defined +
23 route) 16 route)

Data flow graph width 14 14

Data flow graph height 3 (shift registers) +
8 (calculation)

8 (calculation)

Configuration cycles  configuration 2262 configuration 2145
(simulated) preloads 14*3*4 168 preloads 8*8*4 256
(assuming 4 words/ cycles 14* 57 798 cycles 14 * 52 728
cycle burst transfer) sum 3228 sum 3129
Enhancing Parallelism 15 Loop unrolling the outer loop is also not applicable since it

After the synthesis, the configuration calculating the inner
loop utilizes 27 AL Us and 4 IRAMs for shift register synthe-
sis and 21 ALUs and 9 IRAMs for data duplication, respec-
tively. Assuming an XPP64 core, this leaves plenty of room
for further optimizations. Nevertheless, since all optimiza-
tions enhancing parallelism are performed before the synthe-
sis takes place, it is crucial that they estimate the needed
resources and the benefit of the transformation very carefully.
Furthermore, they have to account for both input preparation
strategies to estimate correct values.

Loop Unrolling

Fully unrolling the inner loop would not lead to satisfying
results because the number of inputs and outputs increases
dramatically. This means data duplication would not be appli-
cable and shift register synthesis would exhaust most of the
benefits of the parallelism by producing a very long pipeline
for each data flow graph. Although partial unrolling of the
inner loop would be applicable, it promises not much benefit
for the area penalty introduced.

20

25

30

produces a further configuration. Nevertheless, a related
transformation could do a good job on this loop nest.
Unroll-and-Jam

The unroll-and-jam algorithm enhances parallelism and
also improves IRAM usage. It brings pairs of iterations
together ideally reusing IRAM outputs and calculation
results. The algorithm partially unrolls the outer loop and
fuses the originated inner loops. Before the unroll-and-jam is
performed, the so-called unroll-and-jam factor must be deter-
mined, which denominates the unrolling factor of the outer
loop. This is mainly influenced by the number of ALUs n(=64
assuming XPP64) and calculates to

c unroll—and—jam=# XPP » inner loop=64 27=2

(integer division.
Thus the source code would be transformed to:

for(v=0; v<=VERLEN-3; v+=2){
for(h=0; h<=HORLEN-3; h++){

p2[v+1][h+1] = min(abs((p1[v+2][h] -
pL[v][h]) +

2%

abs((p1[v][h+2] - p1[v][h]) +

2%

p2[v+2][h+1] = min(abs((p1[v+3][h] -

p1[v+1][h]) +

2%

abs((p1[v+1][h+2] - p1[v+1][h])

2%

(p1[v+2][h+2] - p1[v][h+2]) +
(p1[v+2][h+1] - p1[v][h+1]))

(p1[v+2][h+2] - p1[v+2][h]) +
(p1[v+1][h+2] - p1[v+1][h])),
255);

(p1[v+3][h+2] -
plv+1][h+2]) +
(p1[v+3][h+1] -
pl[v+1][h+1])) +

(p1[v+3][h+2] - p1[v+3][h]) +
(p1[v+2][h+2] - p1[v+2][h])) ,
255);
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The transformation introduces additional accesses to
p1[v+3][h], p1[v+3] [h+2], p1[v+3] [h+1], and p1[v+1] [h+1]
(the former hole in the access pattern) as well as a write access
to p2[v+2][h+1]. This means 2 IRAMs more for shift register
synthesis (one input, one output) and 5 IRAMs more for data 5
duplication (4 input, 1 output), while performance is doubled.

84

-continued

2% (pl [v+2] [h+1] - p1 [v] [h+1])) +
abs((pl [v] [h+2] - p1 [v] [h]) +
(1 [v+2] [h+2] - p1 [v+2] [h]) +

Value (shift register

Value (data duplication -

Value data duplications - with

Parameter synthesis) no IRAM placement) IRAM placement)
Vector length 16 16 16

Reused data set size 256 256 256

1O, IRAMS 41+20=6 12I1+20=14 12I+20=14
ALU 45 37 37

BREG 31 (12 defined + 19 route) 42 (4 defined + 38 route) 36 (4 defined + 32 route)
FREG 29 (1 defined + 28 route) 18 (1 defined + 17 route) 24 (1 defined + 23 route)

Data flow graph width
Data flow graph height

14
3 (shift registers) + 8

14

8 (calculation)

14
3 (shift registers) +

(calculation) 8 (calculation)
Configuration cycles  configuration 2753 configuration 2754 configuration 2768
(simulated) preloads 7*4%4 112 preloads 7*12*4 336 preloads 7*12*%4 336
cycles 7%53 371 cycles 7% 69 483 cycles 7*51 357
sum 3236 sum 3573 sum 3461
The simulated results are shown in the table above. Note -continued

the differences of the two columns labeled with “data dupli- 40
cation.” The first used xmap to place the IRAMs, while in the
second, the IRAMs were placed by hand using a greedy
algorithm which places IRAMs that are operands of the same
operator in one line (as long as this is possible). The second 45
solution improved the iteration cycles by 18. This shows that
IRAM placement has a great impact to the final performance.
The traditional unroll-and-jam algorithm uses loop peeling
to split the outer loop in a preloop and an unroll-able main
loop to handle odd loop counts. When, for instance, n=128 is
assumed, the unroll-and-jam factor would calculate to

¢ unroll—and—jam=128 27=4. 33

Since the outer loop count (14) is not a multiple of 4, the
algorithm virtually peels off the first two iterations and fuses
the two loops at the end adding guards to the inner loop body.
Then the code looks approximately as follows (guards g,
emphasized):

for(v=0; v<=VERLEN-5; v+=4){
for(h=0; h<=HORLEN-3; h++){
p2 [v+1] [h+1] = min(abs((pl [v+2] [h ] - p1 [v] [L]) + 65
(p1 [v+2] [h+2] - pl [v] [h+2]) +

2% (pl [v+1] [h+2] - p1 [v+1] [h])), 255);
p2 [v+2] [h+1] = min(abs((pl [v+3] [h] — p1 [v+1] [h]) +
(pl [v+3] [h+2] - p1 [v+1] [h+2]) +
2% (p1 [v+3] [h+1] - p1 [v+1] [h+1])) +
abs((pl [v+1] [h+2] - p1 [v+1] [h]) +
(p1(v [+3] [h+2] - p1 [v+3] [h]) +
2% (pl [v+2] [h+2] - pl [v+2] [h])), 255);
if (v>0) p2 [v+3] [h+1] = min(abs((pl [v+4] [h] - p1 [v+2] [h]) +
(pl [v+4] [h+2] - p1 [v+2] [h+2]) +
2% (pl [v+4] [h+1] - p1 [v+2] [h+1])) +
abs((pl [v+2] [h+2] - p1 [v+2] [h]) +
(pl [v+4] [h+2] - p1 [v+4] [h]) +
2% (p1 [v+3] [h+2] - p1 [v+3] [h])), 255);
if (v>1) p2 [v+4] [h+1] = min(abs((pl [v+5] [h] - p1 [v+3] [h]) +
(pl [v+5] [h+2] - p1 [v+3] [h+2]) +
2% (pl [v+5] [h+1] - p1 [v+3] [h+1])) +
abs((pl [v+3] [h+2] - p1 [v+43] [h]) +
(pl [v+5] [h+2] - p1 [v+5] [h]) +
2% (pl [v+4] [h+2] - pl [v+4] [h])), 255);

Parameterized Function
Source Code

The benchmark source code is not very likely to be written
in that form in real world applications. Normally, it would be
encapsulated in a function with parameters for input and
output arrays along with the sizes of the picture to work on.
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Therefore the source code would look similar to the fol-
lowing:

void edge3x3(int *p1, int *p2, int HORLEN, int VERLEN)

for(v=0; v<=VERLEN-3; v++){
for(h=0; h<=HORLEN-3; h++){
htmp = (**(p1 + (v+2) * HORLEN + h) - **(pl + v * HORLEN + h)) +
(**(pl + (v+2) * HORLEN + h+2) - **(pl + v * HORLEN + h+2)) +
2% (**(pl + (v+2) * HORLEN + h+1) — **(p1 + v * HORLEN + h+1));
if (htmp < 0)
htmp = htmp;
vtmp = (**(pl + v * HORLEN + h+2) — **(p1 + v * HORLEN + h)) +
(**(pl + (v+2) * HORLEN + h+2) —**(pl + (v+2) * HORLEN + h)
)+
2% (**(pl + (v+1) * HORLEN + h+2) =**(p1 + (v+1) * HORLEN + h));
if (vtmp < 0)
vtmp = vtmp;
sum = htmp + vtmp;
if (sum > 255)
sum = 255;
% (p2 + (v+1) * HORLEN + h+1) = sum;

This requires some additional features from the compiler.

86

IRAMSs can hold and a by strip loop iterating over the strips.

interprocedural optimizations and analysis
hints by the Programmer, (e.g., a compiler known assert
(VERLEN % 2=0) makes unroll-and-jam actually pos-
sible without peeling off iterations and running them
conditionally).
Fitting the Algorithm Optimally to the Array
Since HORLEN and VERLEN are not known at compile
time these unknown parameters introduce some constraints
which prevent pipeline vectorization. The compiler must
assume that the IRAMs cannot hold all HORLEN input val-
ues in a row, so pipeline vectorization would not be possible.
Strip Mining Inner Loop
Strip mining partitions the inner loop into a loop that runs
over a strip, which is chosen to be of the same size as the

The strip loops upper bound must be adjusted for the possible
incomplete last strip. After the strip mining, the original code
would be approximately as follows (outer v-loop neglected):

30 for(h=0; h<=HORLEN-3; h+=stripsize)
for(hh=h; h<=min(h+stripsize-1, HORLEN-3); hh++){
htmp = (**(pl + (v+2) * HORLEN + hh) -
**(p1 +v * HORLEN + hh)) +
¥
35 ’

Assuming an IRAM size strip size of 256, the following
simulated results cart be obtained for one strip. The values
must be multiplied with the number of strips to be calculated.

Value (shift register

Value (data duplication -

Parameter synthesis) IRAM placement)
Vector length 16 16

Reused data set size 256 256

1O, IRAMS 41+20=6 12I1+20=14
ALU 45 37

BREG 31 (12 defined + 19 route) 42 (4 defined + 38 route)
FREG 29 (1 defined + 28 route) 18 (1 defined + 17 route)

Data flow graph width
Data flow graph height

14
3 (shift registers) + 8

14

8 (calculation)

(calculation)
Configuration cycles  configuration 2753 configuration 2754
(simulated) preloads TH4* 64 1792 preloads 7*12*64 5376
cycles 128 * 530 67480 cycles 128 * 553 70784
sum 72385 sum 78914
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The RISC DSP needs about 1.47 million cycles for this
amount of data. As mentioned above, these values do not
include cache miss penalties and truly underestimate the real
values. Furthermore, it can be seen that data duplication does
not improve the performance. The reason for this seems to be
a worse placement and routing.

FIR Filter

Original Code

Source code:

#define N 256

#define M 8

for (i=0; i <N-M+1; i++) {

s: ylil = 0;
for (j =0;j <M; j++)

S y[i] +=c[j] *
x[i+M-j-1);

The constants N and M are replaced by their values by the
pre-processor. The data dependency graph is shown in FIG.
38.

for (1 =0; 1< 269; i++) {

s: ylil = 0;
for (j =0;j <8&; j++)
S y[i] +=c[j] *
x[i+7-];
¥

The following is a corresponding table:

Parameter Value

Vector length 269
Reused data set size
O IRAMs

ALU

BREG

FREG

Data flow graph width

N OO N W

Data flow graph height

Configuration cycles 2+8=10

First Solution

In a case in which it is desired to save memory, a straight-
forward solution is to unroll the inner loop and to use shift
register synthesis to delay the values of array x in the pipeline.
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No other optimization is applied before as either they do not
have an effect on the loop or they increase the need for
IRAMSs. After loop unrolling, the following code is obtained:

for (i=0;1<269; i++){
Y[i] = 0;
Y[i] += o[0] * X[i+7];
Y[i] += o[1] * X[i+6];
Y[i] += o[2] * X[i+5];
Y[i] +=¢[3] * x[i+4];
Y[i] +=c[4] * x[i+3];
Y[i] +=¢[5] * x[i+2];
Y[i] +=c[6] * x[i+1];
Y] += c[7] * x[il;
}
The following is a corresponding table:
Parameter Value
Vector length 269
Reused data set size —
/O IRAMs 9
ALU 16
BREG 0
FREG 0
Data flow graph width 2
Data flow graph height 9
Configuration cycles 9+269=278
Dataflow analysis reveals that y[0]=t(x]0], . .., x[7], y[1]-
fix. [1],. .., x[8]), ..., y[i[=fX[i], . . . , x[1+7]). Successive
values of'y depend on almost the same successive values of x.

To prevent unnecessary accesses to the IRAMs, the values of
x needed for the computation of the next values of'y are kept
in registers. In this case, this shift register synthesis needs 7
registers. This will be achieved on the PACT XPP by keeping
them in FREGs. Then the dataflow graph of FIG. 39 is
obtained. An IRAM is used for the input values and an IRAM
for the output values. The first 8 cycles are used to fill the
pipeline and then the throughput is of one output value/cycle.
The code may be represented as follows:
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-continued
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=x[5]:
=x[6];
=x[7];
for (i =0; 1< 269; i++) {
y[i] = ¢7*10 + c6*rl + c5*12 + c4*r3 + c3*rd + c2*15 + c1*16 + c0*17;
10 =rl;
rl =12;
12 =13;
13 =14;
4 =15;
15 =16;
16 =17;
17 = x[i+7];

A final table is shown below, and the expected speedup
with respect to a standard superscalar processor with 2
instructions issued per cycle is 13.6.

20
Parameter Value
Vector length 269
Reused data set size — 25
O IRAMs 2
ALU 16
BREG 0
FREG 7
Data flow graph width 3
Data flow graph height 9
Configuration cycles 8+269 =277 30
Ops Number
LD/ST (2 cycles) 2
ADDRCOMP (1 cycle) 0
ADD/SUB (1 cycle) 8 35
MUL (2 cycles) 8
SHIFT (1 cycle) 0
Cycles per iteration 28
Cycles needed for (28 * 269)/2 = 3766
the loop (2-way)
40

Variant with Larger Loop Bounds
Taking larger loop bounds and setting the values of N and
M to 1024 and 64:

45
for (i=0; i <961; i++){
yli] =0;
for (j = 0; j < 64; j++)
yli] +=c[j] * x[i+63-j;
. . . . . . 50
Following the loop optimizations driver given before, loop
tiling is applied to reduce the iteration range of the inner loop.
The following loop nest is obtained:
for (i=0;1<961; i++) { 55
yli] =0;
for (jj = 0; jj < 8 jj++)
for (j =0;j <8 j++)
yI] ++ c[8%j+j] * x[i+63-8%jj-j];
60
A subsequent application of loop unrolling on the inner
loop yields:
65

for (i=0;1<961; i++) {
yli] =0;

-continued

for (jj = 0; Jj < 8; jj++) {

y[i] +=c[8%j]
x[1+63-8%jj];
*

y[i] +=c[8%jj+1]
x[1+62-8%jj];
*

y[i] +=c[8%jj+2]
x[1+61-8%jj];
*

y[i] +=c[8%jj+3]
x[1+60-8%jj];
*

y[i] +=c[8%jj+4]
x[1+59-8%jj];
*

y[i] +=c[8%jj+5]
x[1+58-8%jj];
*

y[i] +=c[8%jj+6]
x[1+57-8%jj];
*

y[i] +=c[8%jj+7]
x[1+56-8%jj];

Finally, the same dataflow graph as above is obtained,
except that the coefficients must be read from another IRAM
rather than being-directly handled like constants by the mul-
tiplications. After shift register synthesis, the code may be the
following:

for (i=0;1<961;
i++) {

17 = x[i+63];
for (jj=0;jj <8; ]
J++)
YI[i] c[8%)j1*10 + c[8*jj+1]*r1 + c[8*jj+2]*r2 +
= c[8%)j+3]*13 +
c[8%)j+4]* 14 + c[8*[j+5]*15 + c[8*]j+6]*16 +
c[8*)j+7]*17;
0 =rl;
rl =12;
12 =13;
13 =r4;
4 =r5;
15 =16;
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-continued The parameter table is the following:
16 =17;
17 = x[i+63-8%jj]; Parameter Value
} 5
Vector length 249
Reused data set size —

The following table is the same as above except for the

. /O IRAMs 3
vector length and the expected speedup with respect to a ALU 5
standard superscalar processor with 2 instructions issued per 1¢
. BREG 0
cycleis 17.5.
FREG 1
Data flow graph width 2
Parameter Value Data flow graph height 2
Vector length 5 15 Configuration cycles 2+8=10
Reused data set size —
/O IRAMs 2
ALU 16 Loop distribution may then be applied to get a vectorizable
BREG 0 .
FREG p and a not vectorizable loop.
Data flow graph width 3 20
Data flow graph height 9
Configuration cycles 8+8=16 for (i=0;1<249; i++) {
y[il=0;
Ops Number for (j=0;j <8 j++)
tmpl[j] = c[j] * x[i+7-j];
LD/ST (2 cycles) 10 25 for (j=0;j <8 j++)
ADDRCOMP (1 cycle) 0 y[i] += tmp [j];
ADD/SUB (1 cycle) 16 }
MUL (2 cycles) 17
SHIFT (1 cycle) 0
Cycles per iteration 70 : :
Cycles needed for (70 *8)/2 = 280 “ Thg following parameter table Forresponds tq the two inner
the Loop (2-way) loops in order to be compared with the preceding table.

More Parallel Solution

- Parameter Value

The solution presented above does not expose a lot of
: : Fg : Vector length 249
parallelism in the loop. To explicitly parallelize the loop 35 Roused dots set size i
before generating the dataflow graph can be tried. Exposing L/O TRAMs 5
more parallelism may mean more pressure on the memory ALU 2
hierarchy. ?II:EECC: ?
In the data dependence graph presented above, the only Data flow graph width 1
loop-carried dependence is the dependence on S' and it is only 40 Data flow graph height 3

caused by the reference to y[i]. Hence, node splitting is Configuration cycles 1*8+1*8=16
applied to get a more suitable data dependence graph.
Accordingly, the following may be obtained:

The architecture may be taken into account. The first loop
45 is fully parallel, which means that we would need 2*8=16

for (i = 0 1 < 249; i+4) { input values at a time. This is all right, as it corresponds to the
y[i]=0; number of IRAMS of the PACT XPP. Hence, to strip-mine the
for (j=0;j <8 j++) first inner loop is not required. To strip-mine the second loop

{ tmp = c[j] * x[i+7-j]; is also not required. The second loop is a reduction. It com-

y[i] += tmp; 50 putes the sum of a vector. This may be easily found by the
reduction recognition optimization and the following code
may be obtained.

Then scalar expansion may be performed on tmp to remove
the anti loop-carried dependence caused by it, and the follow- 33 for ([{]= 0(;)1 <2495 i++) {
. . X y[i] = 0;
ing code may be obtained: for (j = 03 < 8 j4+)
tmplj] = c[j] * x[i+7-j;
/* load the partial sums from memory using a shorter vector length */

for (= 0;1<249; i++) { for (j = 0;j <4; j++)
y[i] = 0; 60 aux[j] = tmp[2%j] + tmp[2*j+1];
for (j = 0; j < 8; j++) /* accumulate the short vector */
for (j=0;j <1;j++)
tmp[j] = c[j] * x[i+7-j1; aux[2*j] = aux[2*)] + aux[2*j+1];
Y[i] += tmp[j]; /* sequence of scalar instructions to add up the partial sums */

y[i] = aux[0] + aux(2];
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Like above, only one table is given below for all innermost
loops and the last instruction computing y[i].

Parameter Value
Vector length 249
Reused data set size —
/O IRAMs 12
ALU 4
BREG 0
FREG 0
Data flow graph width 1
Data flow graph height 4

Configuration cycles 1*8+1*4+1*1=13

Finally, loop unrolling may be applied on the inner loops.
The number of operations is always less than the number of
processing elements of the PACT XPP.

for (i=0;1<961; i++)

{
tmp[0] = ¢[0] * x[i+7];
tmp[1] = ¢[1] * x[i+6];
tmp[2] = ¢[2] * x[i+5];
tmp[3] = ¢[3] * x[i+4];
tmp[4] = c[4] * x[i+3];
tmp[35) = ¢[5] * x[i+2];
tmp[6] = c[6] * x[i+1];
tmp[7] = c[7] * x[i];
aux[0] = tmp[0] + tmp[1];
aux[1] = tmp[2] + tmp[3];
aux[2] = tmp[4] + tmp[5];
aux[3] = tmp[6] + tmp[7];
aux[0] = aux[0] + aux[1];
aux[2] = aux[2] + aux[3];
y[i] = aux[0] + aux[2]

}

The dataflow graph illustrated in FIG. 40, representing the
inner loop, may be obtained.

It could be mapped on the PACT XPP with each layer
executed in parallel, thus requiring 4 cycles/iteration and 15
ALU-PAEFEs, 8 of which are needed in parallel. As the graph is
already synchronized, the throughput reaches one iteration/
cycle after 4 cycles to fill the pipeline. The coefficients are
taken as constant inputs by the ALUs performing the multi-
plications.

A drawback of this solution may be that it uses 16 IRAMs,
and that the input data must be stored in a special order. The
number of needed IRAMs can be reduced if the coefficients
are handled like constant for each ALU. But due to data
locality ofthe program, it can be assumed that the data already
reside in the cache. As the transfer of data from the cache to
the IRAMs can be achieved efficiently, the configuration can
be executed on the PACT XPP without waiting for the data to
be ready in the IRAMs. Accordingly, the parameter table may
be the following:
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Variant with Larger Bounds

To make the things a bit more interesting, in one case, the
values of N and M were set to 1024 and 64.

for (i=0;1<961;i++) {
yli] = 0;
for (j = 0; j < 64; j++)
y[i]+=c[j] * x[i+63-j];

The data dependence graph is the same as above. Node
splitting may then be applied to get a more convenient data
dependence graph.

for (i=0;1<961; i++) {
yli] = 0;
for (j =0;j <64; j++)

tmp = c[j] *
y[i] += tmp;

x[1+63-j1;

After scalar expansion:

for (i=0;1<961; i++) {
yli] =0,
for (j =0;j <64; j++)

tmplj] = cfj] * x[i+63-j];
y[i] += tmp [j];

After loop distribution:

for (i=0;1<961; i++) {
y[i] = 0;
for (j =0;j <64; j++)
tmplj] = c[j] * x[i+63-j];
for (j =0;j <64; j++)
y[i] += tmp(j];
iy

After going through the compiling process, the set of opti-
mizations that depends upon architectural parameters may be
arrived at. It might be desired to split the iteration space, as too
many operations would have to be performed in parallel, if it
is kept as such. Hence, strip-mining may be performed on the
2 loops. Only 16 data can be accessed at a time, 5o, because of
the first loop, the factor will be 64*2/16=8 for the 2 loops (as

55 it is desired to execute both at the same time on the PACT
XPP).
Parameter Value
Vector length 249 for (i=0;1<961; i++) {
Reused data set size — 60 y[i]=0
JO IRAMs 16 for (jj = 0; jj < 8; jj++)
ALU 15 for (j=0; ] <8; j++)
BREG 0 tmp[8*jj+j] = c[8%jj+j] * x[1+63-8*]j-j];
FREG 0 for (jj = 0; jj < 8; jj++)
Data flow graph width 8 for (j=0;j < 8; j++)
Data flow graph height 4 y[i] +=tmp[8*jj+l;
Configuration cycles 44961 65
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Then, loop fusion on the jj loops may be performed.

for (i=0;1<961; i++) {
yli] =0;
for (jj = 05 jj <8; jj++) {
for (j=0;] <8;j++)
tmp[8%jj+j] = c[8%jj+j] *
for (j=0;] <8;j++)
y[i] += tmp[8*jj+jl;

x[1+63-8*jj—j];

Reduction recognition may then be applied on the second
innermost loop.

for (i=0; 1< 961; i++) {
tmp = 0;
for (jj = 0; jj < 8; jj++)

for (j =0;j <8&; j++)
tmp[8%jj+j] = c[8%]j+j] * x[i+63-8%jj-j];
/* load the partial sums from memory using a shorter vector length */
for (j =0; j <4; j++)
aux[j] = tmp[8%*jj+2*j] + tmp[8*jj+2*j+1];
/* accumulate the short vector */
for (j =0;j<1;j++)
aux[2*j] = aux[2%)] + aux[2*j+1];
/* sequence of scalar instructions to add up the partial sums */
y[i] = aux[0] + aux[2];

Loop unrolling may then be performed:

for (i=0;1<961;i++)
for (jj = 05 jj < 8; jj++)
{

8%jj] = c[8%jj] * x[i+63-8%jj];

—_
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-continued

Parameter

BREG 0
FREG 0
Data flow graph width 8
Data flow graph height 4
Configuration cycles 8

Nevertheless, it should be noted that this version should be
less efficient than the previous one. As the same data must be
loaded in the different IRAMs from the cache, there are a lot
of transfers to be achieved before the configuration can begin
the computations. This overhead must be taken into account
by the compiler when choosing the code generation strategy.
This means also that the first solution is the solution that will
be chosen by the compiler.

Other Variant
Source
Code
for (i=0; i <N-M+1; i++) {
tmp = 0;
for (j=0;j <M; j++)
tmp +=c[j] *
x[i+M-j-1];
x[i] = tmp;

In this case, the data dependence graph is cyclic due to
dependences on tmp. Therefore, scalar expansion is applied
on the loop, and, in fact, the same code as the first version of
the FIR filter is obtained as shown below.

tmp(.
tmp[8¥]j+1] = c[8%}j+1] * x[i+62-8%}]]; 35
tmp[8%jj+2] = c[8*jj+2] * x[i+61-8%jj]; - - -
tmp[8%jj+3] = c[8*jj+3] * x[i+59-8%jj]; for (i = 0; 1 <N-M+1; i++) {
tmp[8%jj+4] = c[8%jj+4] * x[i+58-8*jj]; tmpli] = 03 .
tmp[8%*)j+5] = c[8*jj+5] * x[i+57-8%]j]; for (j =.0;_] <M;_]++). .
tmp[8%jj+6] = c[8*]j+6] * x[1+56-8*jj]; tmp[i] += c[j] * x[i+M-j-1];
tmp[8%jj+7] = c[8*jj+7] * x[i+55-8%jj]; 40 x[i] = tmpli];
aux[0] = tmp([8*jj] + tmp[8*jj+1];
aux([1] = tmp[8*jj+2] + tmp[8*]j+3];
aux[2] = tmp[8*jj+4] + tmp[8*]j+5];
aux[3] = tmp([8*jj+6] + tmp[8*jj+7]; Matrix Multiplication
aux[0] = aux[0] + aux[1]; ..
aux[2] = aux[2] + aux[3]; 45 Or1g1nal Code
y[i] = aux[0] + aux[2]; Source code:
}
The innermost loop may be implemented on the PACT zg:ﬁﬁiz 1%41105
XPP directly with a counter. The IRAMs may be used in FIFO 50 #define N 20
mode, and filled according to the addresses of the arrays in the int A[L][M];
loop. IRAMO, IRAM2, IRAM4, IRAMS6 and IRAMS contain o ﬁ%@
array ‘c’. IRAM1,IRAM3, IRAMS and IRAMY7 contain array main() { ,
X’. Array ‘c’ contains 64 elements, i.e., each IRAM contains int i, j, k, tmp, aux;
8 elements. Array ‘x” contains 1024 elements, i.e., 128 ele- 55 * iHPut_A (L_*.M values) */
ments for each IRAM. Array °y’is directly written to memory, forfil:((j ;:;Ij“;;z -+j)++)
as itis a global array and its address is constant. This constant .
is used to initialize the address counter of the configuration. A
final parameter table is the following: Source code:
60
Parameter Value scanf(*“%d”, &A[i][j]);
/* input B (M*N Values) */
Vector length 8 for (i=0; i<M; i++)
Reused data set size — for (j=0; j<N; j++)
IO IRAMSs 16 65 scanf(“%d”, &B[i][j]);
ALU 15 /* multiply */
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-continued

for (i=0; i<L; i++)
for (j=0; j<N; j++) {
aux = 0;.
for (k=0; k<M; k++)
aux +=A[i][k] *
BIKI[il;
RIi][j] = aux;

/* write data stream */
for (i=0; i<L; i++)
for (j=0; j<N; j++)
printf(*“%d\n”, R [i][j]);

Preliminary Transformations

Since no inline-able function calls are present, no interpro-
cedural code movement is done.

Of the four loop nests, the one with the “/*multiply™*/”
comment is the only candidate for running partly on the XPP.
All others have function calls in the loop body and are there-
fore discarded as candidates very early in the compiler.
Dependency Analysis

for (i=0; i<L; i++)
for (j=0; j<N; j++) {
aux = 0;
for (k=0; k<M; k++)
S2 aux +=A[i][k] *
BIKI[il;
S3  R[i][j] = aux;
¥

S1

FIG. 41 shows a data dependency graph for matrix multi-
plication. The data dependency graph shows no dependencies
that prevent pipeline vectorization. The loop carried true
dependence from S2 to itself can be handled by a feedback of
aux as described in Markus Weinhardt et al., “Memory
Access Optimization for Reconfigurable Systems,” supra.
Reverse Loop-Invariant Code Motion

To get a perfect loop nest, S1 and S3 may be moved inside
the k-loop. Therefore, appropriate guards may be generated
to protect the assignments. The code after this transformation
is as follows:

for (i=0; i<L; i++)
for(j=0; j<N; j++)
for (k=0; k<M k++) {
if (k==0) aux[j] = 0;
aux[j] += A[i][k] * B[k][j];
if (k == M-1) R[i][j] = aux[j];
}

Scalar Expansion

A goal may be to interchange the loop nests to improve the
array accesses to utilize the cache best. However, the guarded
statements involving ‘aux’ may cause backward loop carried
anti-dependencies carried by the j loop. Scalar expansion may
break these dependencies, allowing loop interchange.

for (i=0; i<L; i++)
for (j=0; j<N; j++)
for (k=0; k<M k++) {
if (k==0) aux[j] = 0;
aux[j] += A[i][k] * B[k][j];
if (k == M-1) R[i][j] = aux[j];
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Loop Interchange for Cache Reuse

Visualizing the main loop shows the iteration spaces for the
array accesses. FIG. 42 is a visualization of array access
sequences. Since C arrays are placed in row major order, the
cache lines are placed in the array rows. At first sight, there
seems to be no need for optimization because the algorithm
requires at least one array access to stride over a column.
Nevertheless, this assumption misses the fact that the access
rate is of interest, too. Closer examination shows that array R
is accessed in every j iteration, while B is accessed every k
iteration, always producing a cache miss. (“aux” is not cur-
rently discussed since it is not expected that it would be
written to or read from memory, as there are no defs or uses
outside the loop nest.) This leaves a possibility for loop inter-
change to improve cache access as proposed by Kennedy and
Allen in Markus Weinhardt et al., “Pipeline Vectorization,”
supra.

To find the best loop nest, the algorithm may interchange
each loop ofthe nests into the innermost position and annotate
it with the so-called innermost memory cost term. This cost
term is a constant for known loop bounds or a function of the
loop bound for unknown loop bounds. The term may be
calculated in three steps.

First, the cost of each reference in the innermost loop body
may be calculated to:

1, if the reference does not depend on the loop induction
variable of the (current) innermost loop;

the loop count, if the reference depends on the loop
induction variable and strides over a non-contiguous
area with respect of the cache layout;

N-sb,
if the reference depends on the loop induction variable
and strides over a contiguous dimension. In this case,

N is the loop count, s is the step size and b is the cache
line size, respectively.

Inthis case, a “reference” is an access to an array. Since the
transformation attempts to optimize cache access, it must
address references to the same array within small distances as
one. This may prohibit over-estimation of the actual costs.

Second, each reference cost may be weighted with a factor
for each other loop, which is:

1, if the reference does not depend on the loop index;

the loop count, if the reference depends on the loop
index.

Third, the overall loop nest cost may be calculated by
summing the costs of all reference costs.

After invoking this algorithm for each loop as the inner-
most, the one with the lowest cost may be chosen as the
innermost, the next as the next outermost, and so on.

Innermost

loop RG] A[lk] BLk][] Memory access cost
k 1'-L-NMb-LM-N L:-N+Mb-L+M-N
i 1'-L*N1-L-M1-M-NL-N+L-M+M-N
J Nb LL-M Nb MNb (L+M)+L-M

The preceding table shows the values for the matrix mul-
tiplication. Since the j term is the smallest (assuming b>1), the

65 j-loop is chosen to be the innermost. The next outer loop then

is k, and the outermost is i. Thus, the resulting code after loop
interchange may be:
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for (i=0; i<L; i++)
for (k=0; k<M; k++) ,
for (j=0; j<N; j++) {
if (k==0) aux[j] = 0;
aux[j] += A[i][k] * B[k][j];
if (k == M-1) R[i][j] = aux[j];
¥

FIG. 43 shows the improved iteration spaces. It shows
array access sequences after optimization. The improvement
is visible to the naked eye since array B is now read following
the cache lines. This optimization does not optimize primarily
for the XPP; but mainly optimizes the cache-hit rate, thus
improving the overall performance.

Unroll and Jam

After improving the cache access behavior, the possibility
for reduction recognition has been destroyed. This is a typical
example for transformations where one excludes the other.
Nevertheless, more parallelism may be obtained by doing
unroll-and-jam. Therefore, the outer loop may be partially
unrolled with the unroll factor. This factor is mainly chosen
by the minimum of two calculations:

# available IRAMSs/# used IRAMs in the inner loop body

# available ALU resources/# used ALU resources in the
inner loop.

In this example embodiment, the accesses to “A” and “B”
depend onk (the loop which will be unrolled). Therefore, they
are considered in the calculation. The accesses to “aux” and
“R”do not depend on k. Thus, they can be subtracted from the
available IRAMs, but do not need to be added to the denomi-
nator. Therefore, (assuming an XPP64) 14/2=7 is calculated
for the unroll factor obtained by the IRAM resources.

On the other hand, the loop body involves two ALU opera-
tions (1 add, 1 mult), which may yield an unrolling factor of
approximately 64/2=32. (This is an inaccurate estimation
since it neither estimates the resources spent by the control-
ling network, which may decrease the unroll factor, nor takes
into account that, e.g., the BREG-PAEs also have an adder,
which may increase the unroll factor. Although it does not
influence this example, the unroll factor calculation should
account for this in a production compiler.) The constraint
generated by the IRAMs therefore dominates by far.

Having chosen the unroll factor, the loop trip count is
trimmed to be a multiple of that factor. Since the k loop has a
loop count of 15, the first iteration may be peeled off and the
remaining loop may be unrolled.

for (i=0; i<L; i++) {
for (k=0; k<1; k++) {
for (j=0; j<N; j++) {
if (k==0) aux[j] = 0;
aux[j] += A[i][k] * B[k][j];
if (k==M-1) R[i][j] = aux[j];
¥

)
for (k=1; k<M; k+=7) {
for (j=0; j<N; j++) {
if (k==0) aux[j] = 0;
aux[j] += A[i][k] * B[k][j];
if (k==M-1) R[i][j] = aux[j];

for (j=0; j<N; j++) {
if (k+1==0) aux[j] = 0;
aux[j] += A[i][k+1] * B[k+1][j1;
if (k+1==M-1) R[i][j] = aux[j];
¥
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-continued

for (j=0; j<N; j++) {
if (k+2==0) aux[j] = 0;
aux[j] += A[i][k+2] * B[k+2][j1;
if (k+2==M-1) R[i][j] = aux[j];

¥

for (j=0; j<N j++) {
if (k+3==0) aux[j] = 0;
aux[j] += A[i][k+3] * B[k+3]j1;
if (k+3==M-1) R[i][j] = aux[j];

¥

for (j=0; j<N; j++) {
if (k+4==0) aux[j] = 0;
aux[j] += A[i][k+4] * B[k+4]1[1;
if (k+4==M-1) R[i][j] = aux[j];

for (j=0; j<N; j++) {
if (k+5==0) aux[j] = 0;
aux[j] += A[i][k+5] * B[k+5][j1;
if (k+5==M-1) R[i][j] = aux[j];

for(j=0; j<N; j++) {
if (k+6==0) aux[j] = 0;
aux[j] += A[i][k+6] * B[k+6][j1;

if (k+6==M-1) R[i][j] = aux[j];

Dueto placement by the reverse loop invariant code motion
of'the loop invariant code into the inner loop, which is dupli-
cated seven times, it is very likely that dead code elimination
can get rid of some of these duplicates. Thus, the code may be
shortened to:

for (i=0; i<L; i++) {
for (k=0; k<1; k++) {
for(j=0; j<N; j++) {
if (k==0) aux[j] = 0;
aux[j] += A[i][k] * B[k][j];

)
for (k=1; k<M; k+=7) {
for (j=0; j<N; j++) {
aux[j] += A[i][k] * B[k][j];

for (j=0; j<N; j++) {
aux[j] += A[i][k+1] * B[k+1][j];

for(j=0; j<N; j++) {
aux[j] += A[i][k+2] * B[k+2][j];

for (j=0; j<N; j++) {
aux[j] += A[i][k+3] * B[k+3][j];

for (j=0; j<N; j++) {
aux[j] += A[i][k+4] * B[k+4][j];

for (j=0; j<N; j++) {
aux[j] += A[i][k+5] * B[k+3][j];

for (j=0; j<N; j++) {
aux[j] += A[i][k+6] * B[k+6][j;
if (k+6==M-1) R[i][j]
}
}
}

Before jamming of the inner loops, it may be taken into
account that the first iteration of the k loop was peeled of
which would produce an own configuration. Since the unroll-
and-jam factor is calculated to fit into one configuration, this
side effect should be prevented. Because it should be no
problem to run the k loop with variable step sizes, the k loops
may be fused again, the step size may be adjusted, and the
statements may be guarded. This may yield:
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for (i=0; i<L; i++) {
for (k=0; k<M; k+=k<1?1:7) {
for (j=0; j<N j++) {
if (k==0) aux[j] = 0;
if (k==0) aux[j] += A[i][k] * B[k][j];

¥
for(j=0; j<N; j++) {
if (k>0) aux[j] += A[i][k] * BIK][j];

for(j=0; j<N; j++) {

if (k>0) aux[j] += A[i][k+1] * B[k+1][j]; 10
for(j=0; j<N; j++) {

if (k>0) aux[j] += A[i][k+2] * B[k+2][j];

for(j=0; j<N; j++) {

if (k>0) aux[j] += A[i][k+3] * B[k+3][j; s
for(j=0; j<N; j++) {

if (k>0) aux[j] += A[i][k+4] * B[k+4][j];

for(j=0; j<N; j++) {
if (k>0) aux[j] += A[i][k+5] * B[k+5][j;

for(j=0; j<N; j++) {
if (>0) aux[j] += A[i][k+6] * B[k+6][j];
if (k+6==M-1) R[i][j] = aux[j];

¥

b
} 25

Now, the inner loops may be jammed, and the following
may be obtained.

30
for (i=0; i<L; i++) {
for (k=0; k<M; k+=k<1?1:7) {
for (j=0; j<N; j++) {
if (k==0) aux[j] = 0;
if (k==0) aux[j] += A[i][k] * B[k][j]; 35
if (k>0) {
aux[j] +=Ali][k] * BIk]Ll;
aux[j] += A[i][k+1] * Blk+1 ][j];
aux[j] += A[i][k+2] * Bk+2][j];
aux[j] += A[i][k+3] * Blk+3][j];
aux[j] += A[i][k+4] * Bk+4][j];
aux[j] += A[i][k+5] * Blk+5][j; 40
aux[j] += A[i][k+6 * B[k+6][j];
if (k+6==M-1) R[i][j] = aux[j];
}
}
}
1 45
XPP Code Generation
The innermost loop can be synthesized in a configuration
which uses 14 IRAMs for the input data, one IRAM to tem- “

porary store aux, and one IRAM for the output may R. Fur-
thermore, it may be necessary to pass the value ofk to the XPP
to direct the dataflow. This may be done by a streaming input.
FIG. 44A-44F shows the dataflow graph of the synthesized
configuration and shows matrix multiplication after unroll
and jam. The rightmost 3 branches are omitted from the graph
and event connections are highlighted.

The following code shows the pseudo code that may be
executed on the RISC processor.

55

60

XPPPreload(config)

for (i=0; i<L; i++) {
XPPPreload(0, &A[i][0], M)
XPPPreload(1, &A[i][0], M)
XPPPreload(2, &A[i][0], M)
XPPPreload(3, &A[i][0], M) 65
XPPPreload(4, &A[i][0], M)

102

-continued

XPPPreload(s, &A[i][0], M)
XPPPreload(6, &A[i][0], M)
XPPPreloadClean(15, &R[i][0],
M)
for (k=0; k<M; k+=k<1?1:7) {
XPPPreload(7, &B[k][0], N)
XPPPreload(8, &B[k+1][0],N)
XPPPreload(9, &B[k+2][0],N)
XPPPreload(10, &B[k+3][0],N)
XPPPreload(11, &B[k+4][0],N)
XPPPreload(12, &B[k+5][0],N)
XPPPreload(13, &B[k+6][0],N)
XPPExecute(config, IRAM(0), IRAM(1), IRAM(2), IRAM(3),
IRAM(4), IRAM(S), IRAM(6), IRAM(7),
IRAM(8), IRAM(9), IRAM(10),
IRAM(11), IRAM(12), IRAM(13),
IRAM(15), k)

][0
1[0
1o
1[0

The following table shows the simulated configuration.
The complete multiplication needs about 3120 cycles without
the preloading and configuration. A typical RISC-DSP core
with two MAC units and hardware loop support needs over
26000 cycles (when data is in zero-latency internal memory).
Although the time for preloads and cache misses is neglected
here, the values according to an embodiment of the present
invention may result in improvements of 200-300 percent
compared to a standalone RISC core.

The following is a corresponding parameter table.

Parameter Value
Vector length 20
Reused data set size 20
/O IRAMs 141+ 10 +1 internal
ALU 20
BREG 26 (8 defined + 18 route)
FREG 28 (4 defined + 24 route)
Data flow graph width 14
Data flow graph height 6 (without routing and
balancing)
Configuration cycles  configuration 2633
(simulated) preloads 10*3*7%*5 1050
cycles 10*7*15 1050
sum (k==0) 3120
112+
k==1) 7853
100+
k==7)
100%*
10=

Viterbi Encoder
Original Code
Source Code:

/* C-language butterfly */
#define BFLY(i) {\
unsigned char metric, m0, ml, decision; \
metric = ((Branchtab29_1[i] {circumflex over ( )}syml) +

Source Code:

(Branchtab29_2[i] {circumflex over ()} sym2) + 1)/2;\
mO = vp->old_metrics[i] + metric; \
ml = vp->old_metrics[i+128] + (15 — metric); \
decision = (m0-m1) >=0;\
vp->new_metrics[2*1] = decision ? m1 : m0;\
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vp->dp->w[i/16] | = decision << ((2*i)&31); \
m0 —= (metric+metric—15); \

ml += (metric+metric—15); \

decision = (m0-m1) >=0;\
vp->new_metrics[2*i+1]=decision ? m1 : m0; \
vp->dp->w[i/16] | = decision <<((2*i+1)&31); \

}

int update_viterbi29(void *p,unsigned char sym1,unsigned char sym2) {

int i;

struct v29 *vp =p;

unsigned char *tmp;

int normalize = 0;

for (i=0; i<8; i++)
vp->dp->w[i] = 0;

for (i=0; i<128; i++)

10

BFLY(i); 15 over ()} syml) +
/* Renormalize metrics */ (*_bt29_2++ {circumﬁex over
if (vp->new_metrics[0] > 150) { ()} sym2) +1)/2;
int i; _tmp= (metric+metric—15);
unsigned char minmetric = 255; mO =*_vpom++ + metric;
ml =*_vpoml28++ + (15 — metric);
20 _m0 =m0 - _tmp;
Source Code: _ml =ml + _tmp;
// decision = m0 >=ml;
// _decision =_m0 >=ml;
= isi ?
for (i=0; i<64; i++) . /= decision !
. A . . *_vpnm++ = min(m0,m1);
if (vp->new_metrics[i] < minmetric) 1:mo
minmetric = vp->new_metrics[i]; 25 ;H/ _ H;ecision
for (i=0; i<64; i++) « . . -
L . . _vpnm++ = min(_m0, ml);
vp->new_metrics[i] —= minmetric; 2 ml: mo
normalize = mmmemc; - - /% decision®/ <<

. . _vpdpw[i >> 4] |= (mO0 >=ml)
Zri >i1p+-'——,>old metrics; (2%) & 31)

P =P 7 i . 30 | (_mO >= /* decision*®/ <<
vp->old_metrics = vp->new_metrics; 1 (2*irD)&31);
vp->new_metrics = tmp; -m ! ’

) return normalize; /* Renormalize metrics */
if(vp->new_metrics[0] > 150) {
int i;
IR . 35 unsigned char minmetric = 255;
Interprocedural Optimizations and Scalar Transformations 4 o
. . 1. . R char *_vpnm= vp->new_metrics;
Slnc.e no inline-able fgnctlor} calls. are present, in an for (i=0; i<64; i++)
embodiment of the present invention, no interprocedural code minmetric = min(minmetric,
movement is done. *VPEIHT); N .
After expression simplification, strength reduction, SSA gofr(i_?)‘_’fi’f; i\:f:) niew._metrics;
. . . qe .. 40 Vs )
renaming, copy.coalescmg and idiom recognition, the code *ypnm4+ —= minmetric;
may be approximately as presented below (statements are normalize = minmetric;
reordered for convenience). Note that idiom recognition may .
. . . . -2 :
find the combination of min( ) and use the comparison result ;P;p :::;;01 d metrics:
for decision and _decision. However, the resulting computa- vp->old_metrics = V;,_>newimemcs;
tion cannot be expressed in C, so it is described below as a 45 yp->new_metrics = tmp;
comment. return normalize;
}
int updlat67V1terb129 (void . Initialization
*p,unsigned char sym1,unsigned 50 .
char sym2) { The first loop (setting vp->dp->w[0.7] to zero) may be
int i most efficiently executed on the RISC.
struct v29 *vp =p;
unsigned char *tmp; Butterﬂy LOOp . .
int normalize = 0; The second loop (with the BFLY( ) macro expanded) is of
interest for the XPP compiler and needs further examination:
char*iram0= // XPPPreload(0,
Branchtab29_1; Branchtab29_1, 128/4);
char*iram2= // XPPPreload(2,

char *_vpdpw = vp->dp->w;
for (i=0; i<8; i++)
*_vpdpw_++ = 0;

char *_bt29_1= Branchtab29 1;

char *_bt29_2= Branchtab29 2;

char *_vpomO= vp->old_metrics;

char *_vpom128= vp-
>old_metrics+128;

char * vpnm= vp->new_metrics;

char *_vpdpw= vp->dp->w;

for (i=0; i<128; i++) {

unsigned char metric, _tmp, mo,
ml, _mO0, ml, decision,

_decision;

metric = ((*_bt29_1++ {circumflex

Branchtab29_2;

char*iram4= vp-

>old_metrics;

char*iram5= vp-
>old_metrics+128;

short *iramé= vp-

Branchtab29_2, 128/4);
// XPPPreload(4, vp->old
metrics, 128/4);

// XPPPreload(5, vp-
>old_metrics+128,128/4);
// XPPPreload(6, vp-
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>new_metrics;
unsigned long *iram7=
vp->dp->w;
//syml & sym? are in
IRAM1 &3
for (1=0; i<128; i++) {

unsigned char metric,
_tmp, m0, m1, _mO, ml

metric = ((*iramO++
{circumflex over ()} syml) +

(*iram1++

{circumflex over ()} sym2) +
1)/2;

_tmp= (metric << 1)
-15;

moO = *iram2++ +
metric;

ml = *iram3++ + (15 -
metric);

_m0 =m0 - _tmp;

_ml =ml + _tmp;

// assuming big
endian; little endian has
the shift on the latter min(

>new_metrics, 128/2);
// XPPPreload(7, vp->dp->w,
8);

*iram6++ =
(min(m0O,m1) <<8) |
min(_m0, ml);

(m0 >=ml) <<

*iram7[i >> 4] =

((2*1) & 31)
(Lm0 >=_ml)

<<

(2*i+1)&31);

The corresponding data flow graph is shown in FIG. 45 (for
now ignoring that the IRAM accesses are mostly char
accesses). The solid lines represent data flow, while the
dashed lines represent event flow.

The following is a corresponding parameter table.

Parameter Value
Vector length 128
Reused data set size —
O IRAMs 61+20
ALU 25
BREG few
FREG few
Data flow graph width 4
Data flow graph height 11
Configuration cycles 11+128

Some problems are immediately noticed: IRAM?7 is fully
busy reading and rewriting the same address sixteen times.
Loop tiling to a tile size of sixteen gives the redundant load
store elimination a chance to read the value once and accu-
mulate the bits temporarily, writing the value to the IRAM at
the end of this inner loop. Loop Fusion with the initialization

35

40

45

50

55

loop then may allow propagation of the zero values set in the
first loop to the reads of vp->dp->w[i] (IRAM7), eliminating
the first loop altogether. Loop tiling with a tile size of 16 may
also eliminate the & 31 expressions for the shift values. Since
the new inner loop only runs from O to 16, the value range
analysis now finds that the & 31 expression is not limiting the
value range any further.

All remaining input IRAMs are character (8 bit) based. So
it may be required for split networks to split the 32-bit stream
into four 8-bit streams which are then merged. This adds 3
shifts, 3 ands, and 3 merges for every character IRAM. The
merges could be eliminated when unrolling the loop body.
However, unrolling may be limited to unrolling twice due to
ALU availability as well as due to that IRAMG is already 16
bit based. Unrolling once requires a shift by 16 and an or to
write 32 bits in every cycle. Unrolling further cannot increase
pipeline throughput any more. So the body is only unrolled
once, eliminating one layer of merges. This may yield two
separate pipelines that each handle two eight bit slices of the
32-bit value from the IRAM, serialized by merges.

The modified code may be approximately as follows (un-
rolling and splitting omitted for simplicity):

char*iram0O= Branchtab29_1;
char*iram2= Branchtab29_2;
char*iram4= vp->old_metrics;

char*iram5= vp-
>old_metrics+128;

// XPPPreload(0, Branchtab29_1,
128/4);

// XPPPreload(2, Branchtab29_2,
128/4);

// XPPPreload(4, vp->old metrics,
128/4);

// XPPPreload(5, vp-
>old_metrics+128,128/4);
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short *iram6= vp->new_metrics;
128/2);
unsigned long *iram7= vp->dp->w;
//syml & sym?2 are in IRAM 1 & 3
for (_i=0;_i<8;_i++) {
rlse= 0;
for (12=0; i2<32; i2+=2) {
unsigned char metric, _tmp,
mO, ml, mO0, ml;
metric = ((*iramO++ {circumflex
over ()} syml) +
(*iram1 ++ {circumflex
over ()} sym2) + 1)/2;
_tmp= (metric << 1) -15;
mO = *iram2++ + metric;
ml = *iram3++ + (15 - metric);
_mO0 =m0 - _tmp;
_ml=ml + _tmp;
*iram6++ = (min(m0,m1) << 8)
| min(_mo0, _m1);

rlse = rlse I (m0 >=ml) <<i2

(Lm0 >=_ml) << (i2+1);

*iram7++ = rlse;

// XPPPreload(7, vp->dp->w, 8);

// XPPPreload(6, vp->new_metrics,

The modified data flow graph (unrolling and splitting omit-
ted for simplicity) is shown in FIG. 46. The splitting network
is shown in FIG. 47. The bottom most level merge is omitted

for each level of unrolling.

The following is a corresponding parameter table.

Parameter Value

Vector length 128

Reused data set size —

/O IRAMs 61+20

ALU 2% 24+ 4*3 (split) + 2 (join) = 62
BREG few

FREG few

Data flow graph width 4

Data flow graph height 11 + 3 (split)
Configuration cycles 14 + 64

Re-Normalization

25

30

35

40

45

The following is a corresponding parameter table.

Parameter Value

Vector length 64
Reused data set size —
O IRAMs 1
ALU

BREG

FREG

Data flow graph width
Data flow graph height
Configuration cycles

A oo~ +

=

Reduction recognition may eliminate the dependence for
minmetric, enabling a four-times unroll to utilize the IRAM
width of 32 bits. A split network has to be added to separate
the 8 bit streams using 3 SHIFT and 3 AND operations. Tree
balancing may re-distribute the min( ) operations to minimize
the tree height.

char *iram0 = vp->new metrics; // XPPPreload(0, vp->new_metrics, 16);
for (i=0; i<16; i++)
minmetric = min(minmetric, min(min(*iram0++, *iramO++),
min(*iram0O++, *iram0++)));

The Normalization consists of a loop scanning the input for

the minimum and a second loop that subtracts the minimum

from all elements. There is a data dependency between all

iterations of the first loop and all iterations of the second loop.

Therefore, the two loops cannot be merged or pipelined. They

may be handled individually.
Minimum Search

The third loop is a minimum search on a byte array.

char *iram0 = vp->new_metrics; / /XPPPzeload(0, vp->new_metrics,
64/4);
for (i=0; i<64; i++)

minmetric = min(minmetric, *iramO++);

50
The following is a corresponding parameter table.
Parameter Value
55
Vector length 16
Reused data set size —
/O IRAMs 1I+10
ALU 4 * min
BREG 3 * shln + 3 * shm
60 FREG 0
Data flow graph width 4
Data flow graph height 5
Configuration cycles 5+16
65  Reduction recognition again may eliminate the loop car-

ried dependence for minmetric, enabling loop tiling and then
unroll and jam to increase parallelism. The maximum for the
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and tree rebalancing may reduce the dependence height of the

final merging expression:

char *iram0= vp->new_metrics; / / XPPPreload

char *iram0O= vp->new_metrics;
char *iraml= vp->new_metrics+8;
char *iram2 = vp->new_metrics+16;
char *iram3= vp->new_metrics+24;
char *iram4= vp->new_metrics+32;
char *iram5= vp->new_metrics+40;
char *iram6= vp->new_metrics+48;
char *iram7= vp->new_metrics+56;

for (i=0;_i<2; i++) {
minmetricO = min (minmetricO, min(

minmetricl = min (minmetricl, min(
minmetric2 = min (minmetric2, min(
minmetric3 = min (minmetric3, min(
minmetric4 = min (minmetric4, min(
minmetric5 = min (minmetric5, min(
minmetric6 = min (minmetric6, min(
minmetric7 = min (minmetric7, min(

¥
minmetric = min(min((
min(minmetric_0, minmetric_1),

min(minmetric_2,
minmetric_3)),

min(( min(minmetric_4,

minmetric_5),

min(minmetric_6,
minmetric_7));

// XPPPreload(0,
vp->new_metrics, 2);

// XPPPreload(1,
vp->new_metrics+8, 2);
// XPPPreload(2,
vp->new_metrics+16, 2);
// XPPPreload(3,
vp->new_metrics+24, 2);
// XPPPreload(4,
vp->new_metrics+32, 2);
// XPPPreload(5,
vp->new_metrics+40, 2);
// XPPPreload(6,
vp->new_metrics+48, 2);
// XPPPreload(7,
vp->new_metrics+356, 2);

min(*iramO++, *iramO++),
min(*iramO++, *iramO++)));
min(*iram1++, *iram1++),
min(*iram1++, *iram1++)));
min(*iram2++, *iram2++),
min(*iram2++, *iram2++)));
min(*iram3++, *iram3++),
min(*iram3++, *iram3++)));
min(*iram4++, *iram4++),
min(*iram4++, *iram4++)));
min(*iram5++, *iram5++),
min(*iram5++, *iram5++)));
min(*iram6++, *iramé++),
min(*iram6++, *iramé6++)));
min(*iram7++, *iram7++),
min(*iram7++, *iram7++)));

The following is a corresponding parameter table.

Parameter Value

Vector length 2

Reused data set size —

/O IRAMs 8I+10

ALU 8 * 4 * min =32

BREG 8 * (3 * shln + 3 * shrn) = 48
FREG 0

Data flow graph width 8*4=32

Data flow graph height 5

Configuration cycles 8+2

Re-Normalization

The fourth loop subtracts the minimum of the third loop
from each element in the array. The read-modify-write opera-
tion has to be broken up into two IRAMs. Otherwise, the
IRAM ports will limit throughput.

(0, vp->new_metrics, 64/4)
char *iram1= vp->new_metrics; / / XPPPreloadClean(1,
vp->new_metrics, 64/4)
5 for (i=0; i<64; i++)
*iraml++ = *iramO++ — minmetric;

The following is a corresponding parameter table.

10
Parameter Value
Vector length 64
Reused data set size —
O IRAMs 2I+10

13 ALU 1
BREG 0
FREG 0
Data flow graph width 1
Data flow graph height 1
Configuration cycles 64

20

There are no loop carried dependencies. Since the data size
is bytes, the inner loop can be unrolled four times without
exceeding the IRAM bandwidth requirements. Networks

25 splitting the 32-bit stream into 4 8-bit streams and rejoining
the individual results to a common 32-bit result stream are
inserted.

30 char *iram0= vp->new_metrics; / / XPPPreload
(0, vp->new_metrics, 16)
char *iram1= vp->new_metrics; / / XPPPreloadClean
(1, vp->new metrics, 16)
for (i=0; i<16; i++) {
*iraml++ = *iramO++ — minmetric;
*iraml++ = *iramO++ — minmetric;
*iraml++ = *iramO++ — minmetric;
*iraml++ = *iramO++ — minmetric;

35

40  The following is a corresponding parameter table.

Parameter Value
Vector length 16
45 Reused data set size —
110 IRAMs 2I1+10
ALU 4 * 4(sub) = 16
BREG 6 * shin + 6 * shrn =12
FREG 0
Data flow graph width 4
Data flow graph height 5

50

Configuration cycles 2(split) + 4 * 1(sub) + 2(join) = 8

Unroll and jam can be applied after loop tiling, in analogy

to the third loop, but loop tiling is now limited by the BREGs

55 used by the split and join networks. The computed tiling size

(unroll factor) is 64 BREGs/12 BREGs=5, which is replaced

by 4, since the same throughput is achieved with less over-
head.

char *iramO= vp->

new_metrics;

char *iraml= vp->

new_metrics;

char *iram2= vp->

// XPPPreload (0, vp->new_metrics, 4)
/ / XPPPreloadClean (1, vp->new_metrics, 4)
// XPPPreload (2, vp->new_metrics+16, 4)

new_metrics+16;
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char *iram3= vp-> / / XPPPreloadClean (3, vp->new_metrics+16, 4)
new_metrics+16;
char *iramd= vp-> // XPPPreload (4, vp->new_metrics+32, 4)
new_metrics+32;
char *iram5= vp-> / / XPPPreloadClean (5, vp->new_metrics+32, 4)
new_metrics+32;
char *iram6= vp-> // XPPPreload (6, vp->new_metrics+48, 4)
new_metrics+48;
char *iram7= vp-> / / XPPPreloadClean (7, vp->new_metrics+48, 4)
new_metrics+48;
for (i=0; i<4; i++) {
*iraml++ = *iramO++ - // first pipeline
minmetric;
*iram1++ = *iramO++ —
minmetric;
*iram1++ = *iramO++ —
minmetric;
*iram1++ = *iramO++ —
minmetric;
*iram3++ = *iram2++ - //second pipeline
minmetric;
*iram3++ = *iram2++ —
minmetric;
*iram3++ = *iram2++ —
minmetric;
*iram3++ = *iram2++ —
minmetric;
*iramS++ = *iram4++ - // third pipeline
minmetric;
*iramS++ = *iram4++ —
minmetric;
*iramS++ = *iram4++ —
minmetric;
*iramS++ = *iram4++ —
minmetric;
*iram7++ = *iram6++ —  // fourth pipeline
minmetric;
*iram7++ = *iram6++ —
minmetric;
*iram7++ = *iram6++ —
minmetric;
*iram7++ = *iram6++ —
minmetric;
¥
L. . 40
The following is a corresponding parameter table. -continued
eliminated
Parameter Value // for (i=0; i<8; i++)
/] vp->dp->w[i] = 0;
Vector length 4 45 // Configuration for
Reused data set size — butterfly loop
/O IRAMs 51 +40 char*iram0= / / XPPPreload(0,
ALU 4 * (6(split) + 4(sub) + 6(join)) = 64 Branchtab29_1; Branchtab29_1, 128/4);
BREG 4% (6 * shin + 6 * shrn) =48 char*iram2= // XPPPreload(2,
FREG 0 50 Branchtab29_2; Branchtab29_2, 128/4);
Data flow graph width 16 char*iram4= vp-> / / XPPPreload(4, vp->old
Data flow graph height 1 old_metrics; metrics, 128/4);
Configuration cycles 2(split) + 4 * 1(sub) + 2(join) = & char*iram5= vp-> // XPPPreload(5,
old_metrics+128; vp->old_metrics+128,128/4);
short*iramé= vp-> / / XPPPreload(6,
Final Code 55 new_metrics; vp->new_metrics, 128/2);
. . . unsigned long *iram7= / / XPPPreload(7, vp->dp->w, 8);
Finally the following code may be obtained: Vp->dp->w;
//syml & sym?2 are in
IRAM 1 & 3
int update_viterbi29 60 for (_i=0;_i<8;_i++) {
(void *p, unsigned char tlse=0;
sym 1, unsigned char for (2=0; i<32; 24=2)
Syrllﬁ)l{ {//unrolled once
stm;t ¥29 *vp = p; . unsigned char
unsigned char *tmp; metric, _tmp, m0, ml,
int normalize = 0; 65 _m0, _ml

// initialization loop metric = ((*iramO++
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{circumflex over ()}
syml) +
(*iraml++
{circumflex over ()}
sym2) + 1)/2;
_tmp= (metric << 1) -15;
moO = *iram2++ +
metric;
ml = *iram3++ +
(15 - metric);
_mO0 =m0 - _tmp;
_ml=ml + _tmp;

*iram6++ =
(min(m0O,m1) <<8) |
min(_m0, ml;

rlse = rlse

*iram7++ = rlse;

)

/* Renormalize metrics

*/

if (vp->new_metrics[0]

>150) {
int1;

// Configuration for loop

3
char *iram0O=
vp->new_metrics;
char *iraml=
vp->new_metrics+8;
8);
char *iram2=
vp->new_metrics+16;
char *iram3=
vp->new_metrics+24;
char *iram4=
vp->new_metrics+32;
char *iram5=
vp->new_metrics+40;
char *iram6=
vp->new_metrics+48;
char *iram7=
vp->new_metrics+56;
for (i=0;_ i<2; i++) {
minmetricO = min
(minmetricO, min(
min(*iramO++,
*iram0O++),

minmetricl = min
(minmetricl, min(
min(*iram1++,
*iraml++),

minmetric2 = min
(minmetric2, min(
min(*iram2++,
*iram2++),

minmetric3 = min
(minmetric3, min(
min(*iram3++,
*iram3++),

minmetric4 = min
(minmetric4, min(
min(*iram4++,
*iram4++),

minmetric5 = min
(minmetric5, min(
min(*iram5++,
*iramS++),

I (m0 >=ml) <<i2
(Lm0 >=_ml) << (i2+1);

// XPPPreload(0,
vp->new_metrics, 8);
// XPPPreload(l,
vp->new_metrics+8,

// XPPPreload(2,
vp->new_metrics+16, 8);
// XPPPreload(3,
vp->new_metrics+24, 8);
// XPPPreload(4,
vp->new_metrics+32, 8);
// XPPPreload(5,
vp->new_metrics+40, 8);
// XPPPreload(6,
vp->new_metrics+48, 8);
// XPPPreload(7,
vp->new_metrics+56, 8);

min(*iramO++, *iramO++)));

min(*iraml++, *iraml++)));

min(*iram2++, *iram2++)));

min(*iram3++, *iram3++)));

min(*iram4++, *iramd++)));
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45

50

55

60

65

min(*iram5++, *iram5++)));
minmetric6 = min
(minmetric6, min(
min(*iram6++,
*iram6++),
min(*iram6++, *iram6++)));
minmetric7 = min
(minmetric7, min(
min(*iram7++,
*iram7++),
min(*iram7++, *iram7++)));

minmetric = min(min((

min(minmetric_0,
minmetric_1),

// minmetric is written
to the output IRAM
// Configuration for loop
4, minmetric is in an
input IRAM
char *iramO= vp->
new_metrics;
4)
char *iraml= vp->
new_metrics;
4)
char *iram2= vp->
new_metrics+16;
4)
char *iram3= vp->
new_metrics+16;
4)
char *iramd= vp->
new_metrics+32;
4)
char *iram5= vp->
new_metrics+32;
4)
char *iram6= vp->
new_metrics+48;
4)
char *iram7= vp->
new_metrics+48;
4)
for (i=0; i<4; i++) {
*iram1l++ = *iramO++ —
minmetric;
*iram1l++ = *iramO++ —
minmetric;
*iram1l++ = *iramO++ —
minmetric;
*iram1l++ = *iramO++ —
minmetric;
*iram3++ = *iram2++ —
minmetric;
*iram3++ = *iram2++ —
minmetric;
*iram3++ = *iram2++ —
minmetric;
*iram3++ = *iram2++ —
minmetric;
*iramS++ = *iram4++ —
minmetric;
*iramS++ = *iram4++ —
minmetric;
*iramS++ = *iram4++ —
minmetric;
*iramS++ = *iram4++ —
minmetric;
*iram7++ = *iram6++ —
minmetric;
*iram7++ = *iram6++ —
minmetric;

min(minmetric_2,
minmetric_3)),

min(( min(minmetric_4,

minmetric_5),
min(minmetric_6,
minmetric_7));

// XPPPreload

/ / XPPPreloadClean

// XPPPreload

/ / XPPPreloadClean

// XPPPreload

/ / XPPPreloadClean

// XPPPreload

/ / XPPPreloadClean

/ / first pipeline

/ / second pipeline

/ / third pipeline

/ / fourth pipeline

(0, vp->
new_metrics,

(1, vp->
new_metrics,

@, vp->
new_metrics+16,

@3, vp->
new_metrics+16,

(4, vp->
new_metrics+32,

(5, vp->
new_metrics+32,

(6, vp->
new_metrics+48,

(7, vp->
new_metrics+48,
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*iram7++ = *iram6++ —
minmetric;
*iram7++ = *iram6++ —
minmetric;
}
normalize = minmetric;
}
vp->dp++;
tmp = vp->old_metrics;
vp->old_metrics = vp->
new_metrics;
vp->new_metrics =
tmp;
return normalize;

Performance Considerations

In this example there is not a high data locality. Every input
data item is read exactly once. Only in the case of re-normal-
ization, the new metric array is re-read and re-written. To fully
utilize the PAE array, loop tiling was used in conjunction with
reduction recognition to break dependencies using algebraic
identities. In some cases (minimum search) this may lead to
extremely short vector lengths. This is not a problem as it still
does reduce the running time of the configuration and the
transfer time from the top of the memory hierarchy to the
IRAMs stays the same. The vector length can be increased if
the outer loop that calls the function is known. The additional
data can be used to increase the fill grade of the IRAMs by
unrolling the outer loop, keeping the vector length longer.
This would further increase configuration performance by
reducing overall pipeline setup times.

Performance of XPP for this example is compared to a
hypothetical superscalar RISC-architecture. An average issue
width of two is assumed, which means that the RISC on
average executes two operations in parallel. The estimate is
achieved by counting instructions for the source code pre-
sented under the heading “Interprocedural Optimizations and
Scalar Transformations.” See the table below.
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MPEG?2 Encoder/Decoder
Quantization/Inverse Quantization (quant.c)

The quantization file may include routines for quantization
and inverse quantization of 8x8 macro blocks. These func-
tions may differ for intra and non-intra blocks. Furthermore,
the encoder may distinguish between MPEG1 and MPEG2
inverse quantization.

This may give a total of 6 functions, which are all candi-
dates for function inlining, since they do not use the XPP
capacity by far.

Since all functions may have the same layout (some
checks, one main loop running over the macro block quan-
tizing with a quantization matrix), focus is placed on
“iquant_intra,” the inverse quantization of intra-blocks, since
it may include all elements found in the other procedures.
(The non_intra quantization loop bodies are more compli-
cated, but add no compiler complexity). In the source code the
mpeg part is already inlined, which is straightforward since
the function is statically defined and includes no function
calls itself. Therefore, the compiler may inline it and dead
function elimination may remove the whole definition.
Original Code

void iquant_intra(src,dst,dc_prec,quant_mat,mquant)
short *src, *dst;

int de_prec;

unsigned char *quant_mat;

int mquant;

int i, val, sum;
if (mpegl) {
dst[0] = src[0] << (3-dc_prec);

Original Code

for (i=1; i<64; i++)

val = (int)(src[i]*quant_mat[i]*mquant)/16;
/* mismatch control */
if ((val&1)==0 && val!=0)

Bfly Min Min  Norm

Operation Cycles Setup Butterfly Setup Search Setup Normalize

ADRCOMP 1 6 7 1

LD/ST 2 5 8 2 1 2

LDI 1 3 4 1 1

MOVE 1 4 1

BITOP 1 10

ADD/SUB 1 20 3 1 3

MULT 2 2

CIMP 3 3 2 1

Cycles 23 70 5 11 4 10

Count 1 126 1 64 1 64

Issue 2 Est.

Width RISC
cycles

Total 12 4480 3 352 2 320 5168

Cycles RISC

Cycles
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-continued

val+= (val>0) 7 -1 : 1;
/* saturation */
dst[i] = (val>2047) ? 2047: ((val<-2048) ? 2048 : val);

}

else

{
sum = dst[0] = src[0] << (3-dc_prec);
for (i=1; i<64; i++)

val = (int) (sre[i]*quant_mat[i]*mquant)/16;
sum+= dst[i] = (val>2047) ? 2047 : ((val<-2048) ? -2048 : val);

/* mismatch control */
if ((sum&1)==0)
dst[63] {circumflex over ( )}=1;

Interprocedural Optimizations

Analyzing the loop bodies, it can be seen that they may
easily fitto the XPP and do not use the maximum of resources
by far. The function is called three times from module put-
seq.c. With inter-module function inlining, the code for the
function call may disappear and may be replaced with the
function. Therefore, it may be as follows:

for (k=0; k<mb_height*mb_width; k++) {
if (mbinfo[k].mb_type & MB_INTRA)
for (j=0; j<block_count; j++)
if (mpeg1) {
blocks[k*block_count+j][0] = blocks[k*block_count+j][0]
<<
(3-de_prec);
for (i=1; i<64; i++) {
val = (int)(blocks[k*block count+j][i] *
intra_q[i]*mquant)/ 16;

¥
telse {
sum = blocks[k*block_count+j][0] =
blocks[k*block_count+j][0] <<
for (i=1; i<64; i++) {
val = (int)(blocks[k*block count+j][i] *
intra_q[i]*mquant) / 16;

(3-de_prec);

¥
telse {

Basic Transformations

Since global mpegl does not change within the loop,
unswitching may move the control statement outside the j
loop and may produce two loop nests.

for (k=0; k<mb_height*mb_width; k++) {
if (mbinfo[k].mb_type & MB_INTRA)
if (mpegl)
for (j=0; j<block_count; j++) {
blocks[k*block_count+j][0] =
blocks [k*block_count+j[0]<<
(-
de_prec);
for (i=1; i<64; i++) {
val = (int)(blocks[k*block_count+j][i] *
intra_q[i]*mquant)/16;

¥
¥
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else
for (j=0; j<block_count; j++) {
sum = blocks[k*block_count+j][0] =
blocks[k*block_count+j][0] << (3-dc_prec);
for (i=1; i<64; i++) {
val = (int)(blocks[k*block count+j][i] *
intra_q[i]*mquant) /16;

¥
¥

Furthermore, the following transformations may be per-
formed:

A peephole optimization may reduce the divide by 16 to a
right shift 4. This may be essential since loop bodies
including division for the XPP are not considered.

Idiom recognition may reduce the statement after the
“saturation” comment to dst[i]=min(max(val, —2048),
2047).

Increasing Parallelism

It may be desired to increase parallelism. The j-i loop nest
is a candidate for unroll-and-jam when the interprocedural
value range analysis finds that block_count can only get the
values 6, 8, or 12. Therefore, it has a value range [6,12] with
the additional attribute to be dividable by 2. Thus, an unroll-
and-jam with the factor 2 is applicable (the resource con-
straints would choose a greater value). Since no loop carried
dependencies exist, this transformation is safe.

This is to say that the source code contains a manually
peeled first iteration. This peeling has been done because the
value calculated for the first block value is completely differ-
ent from the other iterations, and the control statement in the
loop would cause a major performance decrease on tradi-
tional processors. Although this does not prevent unroll-and-
jam (because there are no dependencies between the peeled
off first iteration and the rest of the loop), the transformation
must be prepared to handle such cases.

After unroll-and-jam, the source code may be approxi-
mately as follows (only one of the nests shown and the peeled
first iterations moved in front):

for (j=0; j<block_count; j+=2) {
blocks[k*count+j][0] = blocks[k*count+j][0] << (3-dc prec);
blocks[k*count+j+1][0] = blocks[k*count+j+1][0] << (3-dc prec);
for (i=1; i<64; i++) {
val = (int)(blocks[k*count+j][i]*intra_q[i]*mbinfo[k].mquant) >>4;
/* mismatch control */
if ((val&1)==0 && val!=0)
val+= (val>0)?-1:1;
/* saturation */
blocks[k*count+][i] = min(max(val, —2048), 2047);
val = (int)
(blocks[k*count+j+1][i]*intra_q[i]*mbinfo[k].mquant) >>4;
/* mismatch control */
if ((val&1)==0 && val!=0)
val+= (val>0) ?-1:1;
/* saturation */
blocks[k*count+j+1][i] = min(max(val, —2048), 2047);

Further parallelism can be obtained by index set splitting.
Normally used to break dependence cycles in the DDG;, it can
here be used to split the i-loop in two and let two sub-con-
figurations (sub-configuration is chosen as a working title for
configurations that include independent networks that do not
interfere) work on distinct blocks of data. Thus, the i loop is
split into 2 or more loops which work on different subsets of
the data at the same time.
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Handling the Data Types

In contrast to the FIR-Filter, edge detector and matrix
multiplication benchmarks, which all use data types fitting
perfectly to the XPP (it is assumed that the size of int is chosen
to be the XPP architecture data bit width, as everything else
would not lead to any feasible result), the MPEG2 codec uses
all data types commonly used on a processor for desktop
applications. Written for the Intel x86 and comparable archi-
tectures, it may be assumed that the sizes of char, short, and int
are 8, 16, and 32 respectively. Assuming that the XPP has a bit
width of 32 precautions should be taken for the smaller data
types.

Therefore, the stream of data packets with each packet
including 2 or 4 values of the shorter data type may be split
into 2 or 4 streams. [fenough resources are left, this will cause
no performance penalty. Each of the divided streams may be
sent to its own calculation network. Therefore, in every cycle,
two short or four char values may be handled. Nevertheless,
this may cause an area penalty because, besides the split-
merge elements, the whole data flow graph has to be dupli-
cated as often as needed. FIG. 48 shows how short values are
handled. It shows the splitting of short values into two streams
and the merging of the streams after the calculation. The
packet is split into its hi and lo part by shift operations and
merged behind the calculation branches. The legality of this
transformation is the same as with loop unrolling, with an
unrolling factor as big as the data type being smaller as the
architecture data type.

This, however, is not the end of the pole. It may be further
required for the compiler to ensure that every intermediate
result which produces an over/under-flow for the shorter data
type does the same with the bigger data type. Therefore, it has
to insert clipping operations which ensure that the network
calculates with real 16 or 8 bit values, respectively.

If the configuration size does not allow the whole loop
body to be duplicated or dependencies prevent this, there is
still a possibility of merging the split values again. This
causes a performance penalty to the previous solution,
because the throughput is only one (short) value/cycle. FIG.
49 shows how the merge is done. Instead of streaming parallel
through two networks, the values are serialized and de-seri-
alized again after the network. The split values are merged
before the network. An event generator drives the merge and
Demux PAEs. FIG. 49 replaces the two boxes labeled “net-
work” in FIG. 48.

Inverse Discrete Cosine Transformation (idct.c)

The idct-algorithm may be used for the MPEG2 video
decompression algorithm. It operates on 8x8 blocks of video
images in their frequency representation and transforms them
back into their original signal form. The MPEG2 decoder
contains a transform-function that calls idct for all blocks of
afrequency-transformed picture to restore the original image.

The idct function may include two for-loops. The first loop
calls idctrow, and the second calls idctcol. Function inlining is
able to eliminate the function calls within the entire loop nest
structure so that the numeric code is not interrupted by func-
tion calls anymore. In another embodiment, a way to get rid of
function calls between the loop nest is loop embedding that
pushes loops from the caller into the callee.

Original Code

(idet.c)
/* two dimensional inverse discrete cosine
transform */
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-continued

void idet (block)
short *block;

int i;
for (i=0; i<8; i++)
idetrow(block+8%*i);
for (i=0; i<8; i++)
ideteol(block+i);
¥

The first loop may change the values of the block row by
row. Afterwards, the changed block is further transformed
column by column. In this embodiment, all rows have to be
finished before any column processing can be started. The
function is illustrated in FIG. 50.

Dependency analysis may detect true data dependencies
between row processing and column processing. Therefore, it
may be required for the processing of the columns to be
delayed until all rows are done. The innermost loop bodies
idctrow and idctcol are nearly identical. They process
numeric calculations on eight input values (column values in
case of idctcol and row values in case of idctcol). Eight output
values are calculated and written back (as column/row). Idct-
col additionally applies clipping before the values are written
back. Accordingly, idctcol is presented herein. The code may
be as follows:

/* column (vertical) IDCT
*
*
dst[8*k]=sum1=07c|[
* 1]*src[8*1]*cos(pi8*(k+
12)*1)
*
*
* where: c[0] =
1/1024
* c[l...7] = (1/1024)
*sqrt(2)
*/
static void
ideteol (blk)
short *blk;
{
int X0, x1, X2, X3, x4, X5, X6, X7, X8;
/* shorteut
*/
if (! (x1 = (blk[8*4]<<8))) | (x2 = blk[8*6]) |
(x3 =blk[8*2]) | (x4 = bIK[8*1]) | (x5 =
blk[8*7]) |
(x6 = blk[8*5]) | (x7 = blk[8*3])))
{
blk[8*0] = blk[8%1] = blk[8*2] =
blk[8%*3] = blk[8%4] = blk[8*5] =
blk[8*6] = blk[8*7] = iclp[(bIk[8*0] +32)
>>6];
return;
¥
X0 = (blk[8*0] <<8) + 8192;
/* first stage */
X8 = W7* (x4+x5) + 4;
x4 = (x8+ (W1-W7) *x4) >>3;
X5 = (38— (W1+W7) *x5) >>3;
X8 = W3* (x6+x7) + 4;
X6 = (x8— (W3-W5) *x6) >>3;
X7 = (38— (W3+W5) *x7) >>3;
/* second stage */
x8 =x0 +x1;
X0 —=x1;
x1 =W6* (x3+x2) +4;
X2 = (x1- (W2+W6) *x2) >>3
X3 = (x1+ (W2-W6) *x3) >>3;
x1 =x4 + x6;
x4 —=x6;
X6 =%x5 +x7;
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122

-continued

x5 —=x7;

/* third stage */

X7 =x8 +x3;

X8 —=x3;

x3 =x0 +x2;

X0 —=x2;

X2 = (181%* (x4+x5) + 128) >>8;
x4 = (181* (x4-x5) + 128) >>8;
/* fourth stage */

blk[8*0] = iclp[(x7+x1) >>14
blk[8*1

>

iclp[(x3+x2) >>14];

= ]

[8*1] = iclp[ ]
blk[8%*2] = iclp[(x0+x4) >>14];
blk[8%*3] = iclp[(x8+x6) >>14];
blk[8*4] = iclp[(x8-x6) >>14];
blk[8%*5] = iclp[(x0-x4) >>14];
blk[8%6] = iclp[(x3-%x2) >>14];
blk[8*7] = iclp[(x7-x1) >>14];

W1-W7 are macros for numeric constants that are substi-
tuted by the preprocessor. The iclp array is used for clipping
the results to 8-bit values. It is fully defined by the init_jdct
function before idct is called the first time:

void init_idet( )

int i;
iclp = iclip+512;
for (i=-512; i<512; i++)
iclp[i] = (i<-256) ? =256 : ((i>255) ? 255 : i);

A special kind of idiom recognition (function recognition)
is able to replace the calculation of each array element by a
compiler known function that can be realized efficiently on
the XPP. If the compiler features whole program memory
aliasing analysis, it is able to replace all uses of the iclp array
with the call of the compiler known function. Alternatively, a
developer can replace the iclp array accesses manually by the
compiler known saturation function calls. FIG. 51 shows a
possible implementation for saturate (val,n) as an NML sche-
matic using two ALUSs. In this case, it is necessary to replace
array accesses like iclp[i] with saturate (1,256).

The /*shortcut®/ code in idctcol may speed column pro-
cessing up if x1 to x7 is zero. This breaks the well-formed
structure of the loop nest. The if-condition is not loop invari-
ant and loop unswitching cannot be applied. Nonetheless, the
code after shortcut handling is well suited for the XPP. It is
possible to synthesize if-conditions for the XPP (speculative
processing of both blocks plus selection based on condition)
but this would just waste PAEs without any performance
benefit. Therefore, the /*shortcut*/ code in idctrow and idct-
col has to be removed manually. The code snippet below
shows the inlined version of the idctrow-loop with additional
cache instructions for XPP control:

void idet(block)
short *block;
{ . .
nt1;
XPPPreload(IDCTROW_CONFIG); / / Loop Invariant
for (i=0; i<8; i++) {
short *blk;
int X0, x1, X2, X3, x4, X3, X6, X7, X8;
blk = block+8%*i;
XPPPreload (0, blk, 8);
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XPPPreloadClean(1,blk,8); / /IRAMI is erased and assigned to blk
XPPExcute(IDCTROW_CONFIG, IRAM(0); IRAM(1));

for (i=0; i<8; i++) {

¥
¥

As the configuration ofthe XPP does not change during the
loop execution, invariant code motion has moved out XPP-
Preload(IDCTROW_CONFIG) from the loop.

NML Code Generation
Data Flow Graph

As idcteol is more complex due to clipping at the end of the
calculations, idctcol is well suited as a representative loop
body for a presentation of the data flow graph.

FIG. 52 shows the data flow graph for the
IDCTCOLUMN_CONFIG. A heuristic has to be applied to
the graph to estimate the resource needs on the XPP. In this
example, the heuristic produces the following results:

ADD, SUB MUL <<X, >>X Saturate (x, n)

Ops needed 35 11 18 8
ALUs FREGs BREGs

Res. left 19 80 45

Res. avail. 64 80 80

The data flow graph fits into an XPP64 and this example
may proceed without loop dissevering (splitting the loop
body into suitable chunks). See Jodo M. P. Cardoso et al.,
supra.

Address Generation

To fully synthesize the loop body the problem of address
generation for accessing the data must be addressed.

For IDCTCOLUMN_CONFIG, the n” element of every
row must be selected, which means an address serial of (0, 8,
16...1,9,17...7,15,23 ...). Two counter macros may be
used for address generation as shown in FIG. 53. The upper
counter increments by eight and the lower counter increments
by one. The IRAM output is passed to the data flow graph of
IDCTCOLUMN. If all (eight) row elements of a column are
available, SWAP is switched through to the data flow graph
input and the calculation for a new column begins.

For the IDCTROW_CONFIG, the address generation is
very simple as the IRAM already has the block in the appro-
priate order (row after row as it has to be accessed). Again, by
using SIUP (stepped iterative up)-counter macros as
described in the XPP tutorial, it is possible to map linear
address expressions to NML-code in a generic way. As IDC-
TROW_CONFIG accesses a two-dimensional array, two
SIUP-counters may be needed in the corresponding NML
code. The column-elements have to be accessed row after row
so the upper counter’s increment is one and the lower
counter’s increment is eight. However, the NML code for this
access pattern (0...5,6,7,8,9 ... 63) can be reduced to one
single counter (or to FIFO-mode IRAM access).

Address generation for write access may be implemented
in the same manner. The resources have to be updated to take
this additional code into account. It takes 2%*(8+8+2%1)
FREGs and 2*(2+1) more BREGs in the worst case, which is
still available on the XPP.

If IRAM use is not critical, it is also possible to distribute
the data on several IRAMs to improve the memory through-
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put into the XPP-array. This task may be done by the RISC-
core or by a more sophisticated XPP-cache controller.
Further Enhancing XPP Utilization

As mentioned above, idct is called for all data blocks of a
video image (loop in transform.c). This circumstance may
allow for improvement of the XPP utilization.

When looking at the data flow graph of idctcol in detail, it
can be seen that it forms a very deep pipeline. Considering
that the IDCTROW_CONFIG runs only eight times on the
XPP, which means that only 64 (8 times 8 clements of a
column) elements are processed through this pipeline, and
that change from the XPP configuration to the IDCTCOL-
UMN_CONFIG configuration to go on with column process-
ing must wait until all data has left the pipeline, this example
is suboptimal.

Problem (Pipeline Depth)

The pipeline is just too deep for processing only eight times
eight rows. Filling and flushing a deep pipeline is expensive if
only little data is processed with it. First the units at the end of
the pipeline are idle and then the units at the beginning are
unused, as shown in FIG. 54.

Solution (Loop Tiling)

It is profitable to use loop interchange for moving the
dependencies between row and column processing to an outer
level of the loop nest. The loop that calls the idct-function (in
transform.c) on several blocks of the image has no loop inter-
change preventing dependencies. Therefore, this loop can be
moved inside the loops of column and row processing, as
shown in FIG. 55.

Now the processing of rows and columns can be applied on
more data (by applying loop tiling). Therefore, filling and
flushing the pipeline can be neglected.

Constraints (Cache Sensitive Loop Tiling)

The caching hierarchy has to be taken into account when
defining the number of blocks that will be processed by the
IDCTROW_CONFIG. As discussed above, the same blocks
are needed in the subsequent IDCTCOLUMN_CONFIG
configuration. It should be ensured that all blocks that are
processed during IDCTROW_CONFIG fit into the cache.
Loop tiling has to be applied with respect to the cache size so
that the processed data fits into the cache.

IRAM Reuse Between Different Configurations

This example implies another bandwidth optimization that
is just another version of loop tiling. Instead of transferring
data from row processing to column processing via the
memory hierarchy (cache sensitive loop tiling takes care that
only the cache memory is accessed), the memory interface
can be completely bypassed by using the output IRAM of
Config A as input IRAM of Config B, as shown in FIG. 56.
Putting all Together

If we apply cache sensitive loop tiling, IRAM reuse, and
function in-lining, the example can be further optimized.

Finally, the idct-function becomes completely inlined in
transform.c. If block_count is, e.g., 6 and it is assumed that
64*6 words do not exceed the cache size, then the example
may be transformed to:

// transform.c

block = blocks [k* 6];

XPPPreloadIDCTROW_CONFIG);

XPPPreload(0,block,64*6); / /IRAMO gets 64 words from 6 blocks
XPPPreloadClean(1,block,64*6); / /erase IRAM1 and assign to the 6
blocks

XPPExecute(IDCTROW_CONFIG, IRAM(0), IRAM(1));
XPPPreloadIDCOLUMN_CONFIG);
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-continued

XPPPreload(1,block,64 *6); / /redundant -> will be eliminated
XPPExecute(IDCOLUMN_CONFIG, IRAM(1), IRAM(2));

The address generation in IDCTROW_CONFIG and
IDCOLUMN_CONFIG has to be modified for reflecting the
different data block size—caused by loop tiling—that has to
be processed. This can be implemented by an additional SUM
counter that generates the block offsets inside the tiles, as
shown in FIG. 57.

The following table provides architectural parameters for
IDCTROW_CONFIG and IDCOLUMN_CONFIG of the
final result. It relies on a cache that is able to store
block_count blocks. As two configurations are executed in
this example, the configuration cycles have to be taken twice.
Therefore, the total configuration cycles are 2x(block_countx
64+(12+2x8)x2).

Parameter Value

8 words
block_count x 64 words

Vector length
Reused data set size

/O IRAMs 3 (one shared)
ALU 45 FUs
DREG 41 FUs
FREG 36 FUs

Data flow graph width 8
Data flow graph height 12
Configuration cycles block_count x 64 + (12 +2* 8)x 2

Performance Considerations

In this example, it is possible to exploit high data locality,
which means that many operations are performed on a limited
memory range. The performance of the XPP solution of this
embodiment is compared to a hypothetical superscalar RISC-
architecture. An issue width of two is assumed, which means
that the RISC executes on average two operations in parallel.

Ops for Est. RISC
Row/Column cycles
LD/ST 16 2 32
ADRCOMP 16 1 16
ADD/SUB 35 1 35
MULT 11 2 22
SHIFT 18 1 18
SAT 8 4 32
Issue Width 2 155
Cyc/Row (Col) 78
Proc. 8 620
Rows
Proc. Cols 8 620
RISC Cye/Blk 1240
XPP Cye/Blk 128 with data 24
duplication +
reordering
Speedup 10 with data 52
duplication +
reordering
Even though speedup is reasonable, fetching the input data

from a single IRAM (which means that it is required to feed
the eight inputs in eight cycles before processing is started)
reduces the potential speedup significantly. In other words,
there is a pipeline that is able to process eight input values per
cycle, but the pipeline is loaded only every eighth cycle. This
causes that only every eighth pipeline stage is filled. FIG. 58
illustrates this.
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Full utilization can be achieved only by loading the eight
input values of the pipeline in one cycle. A solution to
improve the memory throughput to the pipeline is data dupli-
cation as described under the heading “Hardware.”

Instead of loading the six 8x8 blocks to a single IRAM, in
an embodiment of the present invention, the XPPPreload-
Multiple command may be used to load the eight IRAMs with
the same contents:

XPPPreload(0,block,64*6); / /IRAMO gets 64 words from 6 blocks

is changed to:

XPPPreloadMultiple(0XFE,block,64x6) / /load RAMO up to IRAM7 with
blocks

Now the pipeline gets fully utilized and eight results per
cycle must be stored. This can be achieved by writing every
output value to another IRAM, which additionally takes eight
more IRAMs. (Using data duplication in this example
requires all 16 IRAMs of the XPP64.) For storing the data that
is generated with IDCTROW_CONFIG we have to change:

XPPPreloadClean(1,block,64*6); / /erase IRAM1 and assign to the 6
blocks

to:
tmpsize=64*6/8;
XPPPreloadClean(8, block+0*tmpsize, tmpsize);
Rslt 1
XPPPreloadClean(9, block+1*tmpsize, tmpsize);
Rslt 1
XPPPreloadClean(10, block+2*tmpsize, tmpsize); / /IRAM 10 for interm.
Rslt 1
XPPPreloadClean(11, block+3*tmpsize, tmpsize); / /IRAM11 for interm.
Rslt 1
XPPPreloadClean(12, block+4*tmpsize, tmpsize); / /IRAM12 for interm.
Rslt 1
XPPPreloadClean(13, block+5*tmpsize, tmpsize); / /IRAM 13 for interm.
Rslt 1
XPPPreloadClean(14, block+6*tmpsize, tmpsize); / /IRAM14 for interm.
Rslt 1
XPPPreloadClean(15, block+7*tmpsize, tmpsize); / /IRAM1S5 for interm.
Rslt 1

/ /IRAMBS for interm.

/ /IRAMO for interm.

This causes different data layouts for the intermediate
results. An additional configuration (REORDER_CONFIG),
as shown in FIG. 59, may be needed to restore the original
data layout.

Again, address generation has to be modified to fetch eight
input values per cycle. This, on the one hand, requires seven
additional adders, but, on the other hand, avoids swaps and
latches for keeping the data eight cycles.

Data duplication and data reordering may finally trans-
forms the example code to:

// transform ¢

block = blocks[k*6];

XPPPreload (IDCTROW_CONFIG);

XPPPreloadMultiple (0xFF, block, 64x6) / /load IRAMO up to IRAM7 with
blocks

tmpsize = 64 * 6/8; / /result gets seperated into 8 IRAMs
XPPPreloadClean(8, block+0*tmpsize, tmpsize); / / IRAM 8 tmpsize); for
interm. Rslt 1

XPPPreloadClean(9, block+1*tmpsize, tmpsize); / / IRAM 9 tmpsize); for
interm. Rslt 1

XPPPreloadClean(10, block+2*tmpsize, tmpsize); / / IRAM 10 tmpsize);
for interm. Rslt 1

XPPPreloadClean(11, block+3*tmpsize, tmpsize); / / IRAM 11 tmpsize);
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-continued

for interm. Rslt

1

XPPPreloadClean(12, block+4*tmpsize, tmpsize); / / IRAM 12 tmpsize);
for interm. Rslt

1

XPPPreloadClean(13, block+5*tmpsize, tmpsize); / / IRAM 13 tmpsize);
for interm. Rslt

1

XPPPreloadClean(14, block+6*tmpsize, tmpsize); / / IRAM 14 tmpsize);
for interm. Rslt

1

XPPPreloadClean(15, block+7*tmpsize, tmpsize); / / IRAM 15 tmpsize);
for interm. Rslt

1

XPPExecute(IDCTROW_CONFIG, IRAM(0-7), IRAM(8-15));
XPPPreloadIDCOLUMN_CONFIG);

XPPPreloadMultiple (OxXFF, block, 64x6) // l|d IRAMO-IRAM?7 with
interm. Rslt 1

XPPPreloadClean(8, block+0 *tmpsize, tmpsize); / / IRAMS for interm.
Rslt 2

XPPPreloadClean(9, block+1 *tmpsize, tmpsize); / / IRAM9 for interm.
Rslt 2

XPPPreloadClean(10, block+2 *tmpsize, tmpsize); / / IRAM10 for interm.
Rslt 2

XPPPreloadClean(11, block+3 *tmpsize, tmpsize); / / IRAM11 for interm.
Rslt 2

XPPPreloadClean(12, block+4 *tmpsize, tmpsize); / / IRAM12 for interm.
Rslt 2

XPPPreloadClean(13, block+5 *tmpsize, tmpsize); / / IRAM13 for interm.
Rslt 2

XPPPreloadClean(14, block+6 *tmpsize, tmpsize); / / IRAM14 for interm.
Rslt 2

XPPPreloadClean(15, block+7 *tmpsize, tmpsize); / / IRAM1S5 for interm.
Rslt 2

XPPExecute (IDCOLUMN_CONFIG, IRAM(0-7), IRAM(8-15));
XPPPreload(REORDER_CONFIG);

XPPPreloadMultiple(OXFF, block, 64x6) / /ld IRAMO-IRAM7 with interm.
Rslt 2

sltsize = 64; / / 64*6/6;

XPPPreloadClean(8, block+0 *rsltsize, rsltsize); / / IRAMR for final Rslt
XPPPreloadClean(9, block+1 *rsltsize, rsltsize); / / IRAMY for final Rslt
XPPPreloadClean(10, block+2 *rsltsize, rsltsize); / / IRAM10 for final Rslt
XPPPreloadClean(11, block+3 *rsltsize, rsltsize); / / IRAMI11 for final Rslt
XPPPreloadClean(12, block+4 *rsltsize, rsltsize); / / IRAM12 for final Rslt
XPPPreloadClean(13, block+4 *rsltsize, rsltsize); / / IRAM13 for final Rslt
XPPExecute(IDCOLUMN_CONFIG, IRAM(0-7), IRAM(8-13));

Wavelet

void

forward wavelet( )

int i, nt, *dmid;
int *sp, *dp, d_tmp0, d_tmp1, d_tmpi, s_tmp0,
s_tmpl;
int mid, ii;
int *x;
int s[256], d[256];
for (nt=COL; nt>=BLOCK_SIZE; nt>>=1) {
for (i=0; i<nt*COL/*tmp_nt*/; i+=COL) {
x = &int_datal[i];
mid=(nt>>1)-1;
s[0] = x[0]
d[0] = x[ROW];
s[1]=x[2];
s[mid] = x[2*mid];
d[mid] = x[2*mid+ROW];
d[0] = (d[0]<<1-s[0]-s[1];
s[0] = s[0]+(d[0[>>2);
d_tmp0 = d[0];
s_tmp0 =s[1];
for (ii=1; ii<mid; ii++) {
s_tmpl = x[2*ii+2];
d_tmpl = (X[2*ii+ROW])<<1) - s_tmp0 - s_tmp1;
d[ii] = dtmp1;
s[ii] = s_tmpO+((d_tmpO+d_tmp1)>>3);
d_tmp0 =d_tmp1;
s_tmp0 =s_tmpl;

d[mid] = (d[mid]-s[mid])<<1;
s[mid] = s[mid]+((d[mid-1]+d[mid])>>3);
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for (ii=0; ii<=mid; ii==) { for (i=0; i<nt; i++) {
x[ii] = s [ii]; x = &int_datal[i];
x[ii+mid+1] = d[ii]; mid = (nt>>1)-1;
} 5 s[0] = x[OT;
d[0] =x[64];
for (i=0; i<nt; i++) { s[1] =x[128];
x = &int_datal[i]; s[mid] = x[128*mid];
mid = (nt>>1)-1; d[mid] = x[128*mid+64];
s[0] =x[0]; d[o —(d J<<1)-s[0]-s[1];
d[0] =x[COL]; 10 s[0] = s[0]+(d[0]>>2);
s[1] = x[COL<<1]; d,tmpo d[o];
s[m 1d = x[(COL<<1)*mid]; s_tmp0 =s[1];
d[mid (COL<<1)*m1d +COL]; for (ii=1; ii<mid; ii++) {
d[o] = [ 1<<1)-s[0]-s[1]; d[ii] = (x[128*ii+64]<<1) - s_tmp0 — x[128*(ii+1)];
s[0] = s[0]+(d[0 >>2), s[ii] = s_tmpO0 + ((d_tmpO + d[ii])>>3);
d7Mp0 d[oj; 15 d_tmp0 = d[ii];
s_tmp0 =s[1]; s_tmp0 = s[ii];
for (ii=1; ii<mid; ii++) {
s_tmpl = x[2*COL*(ii+1)]; d[mid] = (d[mid]<<1) - (s[mid]<<1);
d_tmpl = (x[2*COL*ii+COL]<<1)-s_tmpO-s_tmp1; s[mid] = s[mid] + ((d[mid-1]+d[mid])>>3);
d[ii] = d_tmpl; for (ii=0; ii<=mid; ii++) {
s[ii] = s_tmpO+((d_tmpO+d_tmp1)>>3); 20 x[1i*64] = s[ii];
d_tmp0 = d_tmp1; x[(ii+mid+1)*64] = d[ii];
s_tmp0 =s_tmpl;
} }
d[mid] = (d[mid]<<1)—(smid]<<1); ¥
s[mid] = s[mid]+((d[mid-1]+d[mid])>>3); ¥
for (ii=0; ii<=mid; ii++) { 75
x[1i*COL] = s[ii]; . .
x[(ii+mid+1)*COL] = d[ii]; Below is a table for each innermost loop. The tables for the
} first and the third loops are identical, as are the tables for the
¥ second and the fourth loops. Accordingly, 2 tables are pre-
} ! 0 sented below.
Original Code Parameter Value
Optimizing the Whole Loop Nest Vector length mid-2
. . . 35 Reused data set size —
After pre-processing and application of copy propagation /O IRAMs 6
over s_tmpl, d_tmpl, the following loop nest may be gllng 8
obtained: FREG 5
Data flow graph width 2
40 Data flow graph height 6
void forward_wavelet( ) Configuration cycles 6 + (mid-2)
{ Vector length mid
int i, nt, *dmid; Reused data set size —
int *sp, *dp, d_tmp0, d_tmp1, d_tmpi, s_tmp0, s_tmp1; /O IRAMs 6
int mid, ii; ALU 0
int *x; BREG 0
int s[256], d[256]; 45 FREG 0
for (nt=64; nt>=16; nt>>=1) { Data flow graph width 2
for (i=0; i<nt*64; i+=64) { Data flow graph height 1
x = &int_datal[i]; Configuration cycles mid
mid = (nt>>1)-1;
s[0] =x[0];
S[[l]] [[ ]] 30 The two inner loops do not have the same iteration range
s[mid] = %[2*mid]; and could be candidates for loop fusion. Therefore, the first
d[mid] = [2*m1d+1] and last iterations of the second loop may be peeled off. The
d[0] = (d[0]<<1)-s[0]-s[1]; surrounding code between the 2 loops can be moved to after
Z[ =s[0 +(d >>2)’ the second loop. Accordingly, the following code for the loop
sftmgo Sl 55 nest may be obtained.
for (ii=1; ii<mid; ii++) {
d[ii] = (x[2*ii+1])<<1) - s_tmp0 — x[2*ii+2];
s[ii] = s_tmpO0 + ((d_tmpO + d[ii])>>3); for (nt=64; nt>=16; nt>>=1) {
d_tmp0 = d[ii]; for (i=0; i<nt*64; i+=64) {
s_tmpO = s[ii]; 60 x = &int_datali];
mid = (nt>>1)-1;
d[mid] = (d[mid]-s[mid])<<1; s[0] =x[0];
s[mid] = s[mid]+((d[mid-1]+d[mid])>>3); d[o] =x[1];
for (ii=0; ii<=mid; ii++) { s[1]=x[2];
x[ii] = s[ii]; s[mid] = x[2*mid];
x[ii+mid+1] = d[ii]; d[mid] = x[2*mid+1];
} 65 d[0] = (d[0]<<1)-s[0]-s[1];
} s[0] = s[0]+(d[0]>>2);
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d_tmp0 = d[0]
s_tmp0 =s[1];
for (ii=1; ii<mid; ii++) {
d[ii] = (x[2*ii+1])<<1) - s_tmp0 — x[2*1i+2];
s[ii] = s_tmpO+((d_tmp0 + d[ii])>>3);
d_tmp0 = d[ii];
s_tmp0 = s[ii];

for (ii=1; ii<mid; ii++) (
x[ii] = s[ii];
x[ii+mid+1] = d[ii];

[mid] = (d[mid]-s[mid])<<1;
s[mid] = s: mid] + ((d[mid-1]+d[mid])>>3);

#
Ko
*
g
o
&
LR
I
C}.
El
2

for (i=0; i<nt; i++) {
x = &int_data[i];
mid = (nt>>1)-1;
s[0] = x[0];
d[o] =
[1
[

mid

x[64];
x[128];
(d[
[0]

[2)

] =x[128*mid];
[mid] [128*m1d +64]
[0] = ([0]<<1)-s[0]-s[1];
s[0] = s[0]+(d[0 >>2);
d_tmp0 = d[0];
s_tmp0 =s[1];
for (ii=1; ii<mid; ii++) {
d[ii] = (x[128*ii+64]<<1) - s_tmp0 — x[128*(ii+1)];
s[ii] = s_tmp0 + ((d_tmpO+d_tmp1)>>3);
d_tmp0 = d[ii];
s_tmp0 = s[ii];

for (ii=1; ii<mid; ii++) {
x[ii*64] = s[ii];
X[(ii+mid+1)*64] = d[ii];

-

[mid] = (d[mid]<<1) — (s[mid]<<1);

[mid] = s[mid] + ((d[mid-1]+d[mid])>>3);
[0] = s[0];

x[(mid+1)*64] = d[0];

x[mid*64] = s[mid];

X[(2*mid+1)*64] = d[mid];

2

After loop peeling, the only change with respect to the
parameters is the vector length. Accordingly, the tables are
changed to the following:

Parameter Value
Vector length mid-2
Reused data set size —
/O IRAMs 6
ALU 2
BREG 0
FREG 2
Data flow graph width 2
Data flow graph height 6
Configuration cycles 6 + (mid-2)
Vector length mid-2
Reused data set size —
/O IRAMs 6
ALU 0
BREG 0
FREG 0
Data flow graph width 2
Data flow graph height 1
Configuration cycles mid-2

The fusion of the inner loops is legal as there would be no
loop-carried dependencies between the instructions formerly

130

in the second loop and the instructions formerly in the first
loop. The following loop nest may be obtained.

for (nt=64; nt>=16; nt>>=1) {
for (i=0; i<nt*64; /*tmp_nt*/; i+=64) {
x = &int_datal[i];
mid = (nt>>1)-1;

w

10

0] - <d[ 1<<1)=s{0]-s[1];
[0]+(d[0]>>2);
d7Mp0 d[og;
s_tmpO = s[1];
15 for (ii=1; ii<mid; ii++) {
d[ii] = ((x[2*ii+1])<<1) - s_tmp0 — x[2*ii+2];
s[ii] = s_tmp0 + ((d tmpO+d[ii])>>3);
d_tmp0 = d[ii];
s_tmp0 = s[ii];
x[ii+mid+1] = d[ii];

=
[

20 1
d[mid] = (d[mid]-s[mid])<<1;
mid] = s[mld + ((d[mid-1]+d[mid])}>>3);

25 X[2*mid+1] =d mld]

for (i=0; i<nt; i++) {
x = &int_datal[i];
mid = (nt>>1)-1;
$[0] = x[0];
d[0] = x[64];
s[1] =x[128];
[mid] = x[128*mid];
mid] = [128*m1d+64]
= (d[0]<<1)~s[0]-s[1];
[0] = s ]+<d[0]>>2>;
d_tmp0 = d[0];
35 s_tmpO = s[1];
for (ii=1; ii<mid; ii++) {
d[ii] = (x[128*1i+64]<<1) — s_tmp0 — x[128*(ii+1)];
s[ii] = s_tmp0 + ((d_tmpO + d[ii])>>3);
d_tmp0 = d[ii];
s_tmp0 = s[ii];
40 x[1i*64] = s[ii];
x[(1i+mid+1)*64] = d[ii];

30

mid] = (d[mid]<<1)-(s[mid]<<1);
i ] =3[ m1d |+((d[mid-1]+d[mid])>>3);

[

[m

[0] =
45 X[(m1d+1)*64 d[oj;

[

[

><Vl

x[mid*64] = s[mid];
X[(2*mid+1)*64] = d[mid];

50
After loop fusion, there are only two loops, and they have

the following same parameter table.

Parameter Value
55

Vector length mid-2
Reused data set size —
/O IRAMs
ALU
BREG

60 FREG
Data flow graph width
Data flow graph height 6
Configuration cycles 6 + (mid-2)

RO oy

65 When performing value range analysis, the compiler finds
that nt ranges take the values 64, 32, and 16. The upper bound
of the inner loops is mid, which depends on the value of nt.
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The analysis finds then that mid can take the values 31, 15,
and 7. Loops with constant loop bounds can be handled more
efficiently on the PACT XPP. This means that the inner loops
can be better optimized if mid is replaced by a constant value.
This will happen when the outer loop is unrolled. This way, a
larger set of code will be obtained, but with 3 instances of the
loop nest, each being a candidate for a configuration. This can
be seen as a kind of temporal partitioning. Thus, the outer
loop is completely unrolled giving six new loop nests.

for (i=0; i<4096; i+=64) { /*nt=64*/
x = &int_datal[i];
mid=31;
[ ] [ ],

1]
1]= [ ]
| = (d J<<1)-s[0]-s[1];
s[0] = s[0]+(d[0 >>2),
d tmpO d[og;
s_tmp0 = s[1];
for (ii=1; 1i<31; ii++) {
d[ii] = ((x[2*ii+1])<<1) - s_tmpO0 — X[2*1i+2];
s[ii] = s_tmpO+((d_tmpO + d[ii])>>3);
d_tmp0 = d[ii];
s_tmp0 = s[ii];
x[ii] = s[ii];
x[ii+32] = d[ii];

¥

d[31] = (d[31]-s[31])<<1;

s[31] =s[31] +((d 30]+d[31])>>3);
x[0] = s[0];

x[32] = d[0];

x[31] =s[31]

x[63] =d[31];

for (i=0; i<64; i++) {
x = &int_datal[i];
mid =31;
s[0] =x[0];
=x[64];
x[128];
1= x[3968];
[31] = x[4032];
101 OT<<D)-s(01-s{1;
s[0] = s[0]+(d[0]>>2);
d7Mp0 d[og;
s_tmp0 = s[1];
for (ii=1; 1i<31; ii++) {
d[ii] = (x[128*ii+64]<<1) — s_tmp0 — x[128*(ii+1)];
s[ii] = s_tmp0 + ((d_tmpO +d[ii])>>3);
d_tmp0 = d[ii];
s_tmp0 = s[ii];
x[ii*64] = s[ii];
x[(1i+32)*64] = d[ii];

d[o]
s[1] =
s[31
d[31
d[o]

for (i=0; i<2048; i+=64) { /*nt =32%/
x = &int_datal[i];
mid = 15;
s[0] = x[0];
] =x[1];
x[2];
1=x[30];
[15] =x[31];
[0]= (d J<<1)-s[0]-s[1];
s[0] =s[0]+(d[0 >>2),
d7Mp0 d[og;
s_tmp0 = s[1];

d[o
s[1] =
s[15
ds
d[9]
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for (ii=1; ii<15; ii++) {
d[ii] = (x[2*ii+1])<<1) - s_tmp0 — x[2*ii+2];
s[ii] = s_tmpO0 + ((d_tmpO+d[ii])>>3);
d_tmp0 = d[ii];
s_tmpO = s[ii];
x[ii] = s[ii];
x[ii+16] = d[ii];

}

d[15] = (d[15]-s[15])<<1;

s[15] = s[15] +((d 14]+d[15])>>3);
x[0] = [0];

x[16] = d[0];

x[15] = s[15];

x[31] = d[15];

for (i=0; i<32; i++) {
x = &int_datal[i];
mid = 15;
s[0 ] x[0];
x[64];
x[128];
] = x[1920];
15] = x[1984];
] - (0}<<~s{0}-1);
[0]+(d[0]>>2);
d tmpO d[oj;
s_tmpO = s[1];
for (ii=1; ii<15; ii++) {

uw—'._.

d[ii] = (x[128*ii+64]<<1) - s_tmp0 — x[128*(ii+1)];

s[ii] = s_tmpO0 + ((d_tmpO+d[ii])>>3;
d_tmp0 = d[ii];

s_tmpO = s[ii];

x[1i*64] = s[ii];

x[(ii+16)*64] = d[ii];

d[15]<<1)~(s[15]<<1);
(15} ((d[14]+d[15))>>3);

@~

for (i=0; i<1024; i+=64) { /*nt =16*/
x = &int_datal[i];
mid

o

d[0]<<1)-s[0]-s[1];

[0] = s[01+(d[0 >>2>,

d_tmp0 = d[0];

s_tmpO = s[1];

for (ii=1; ii<7; ii++) {
d[ii] = (x[2*1i+1])<<1) - s_tmp0 — X[2*ii+2];
s[ii] = s_tmpO+((d_tmpO+d[ii])>>3);

+((d[6 )>>3);

for (i=0; i<16; i++) {
x = &int_datal[i];

2 g
S &
[
\'\l

]

[ =N}
<

x[128];

oo
3=
>
&)
(=)
=2

[=3E]
L | TR | N | R TR
al
o0
o T

2

(d[0]<<1)-s[0]-s[1];
s[0]+(d[0]>>2);

»
=
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d_tmp0 =d[0];

s_tmp0 = s[1];

for (ii=1; 1i<7; ii++) {

d[ii] = (x[128*1i+64]<<1) - s_tmp0 — x[128*(ii+1)];
s[ii] = s_tmp0 + ((d_tmpO+d[ii])>>3)

d_tmp0 = d[ii];

s_tmpO = s[ii];

x[ii*64] = s[ii];

x[(1i+8)*64] = d[ii];

}

d[7] = (d[7]<<1) - (S TI<<1);
s[7] =s[7] + ((d[6]+d[7])>>3);
x[0] = s[0];

x[512] = d[0];

x[448] = s[7];

X[960] = d[7];

In the parameter table, the vector length is the only value
that changes. Below is a parameter table for the first two
loops. To deduce the table for the other loops, the vector

length has to be set to 14 and 6, respectively.

Parameter Value

Vector length

Reused data set size
O IRAMs

ALU

BRED

FREG

Data flow graph width
Data flow graph height
Configuration cycles

W
amp o ;e | B

6+30=36

Optimizing the Inner Loops

The efforts are then concentrated on the six inner loops.
They all need 2 input data and 4 output data. 2 more data are
needed for the first iteration. Hence, at most, 8 IRAMSs are
required for the first iteration and 6 for the others. This means
that the loops can be unrolled twice, requiring 14 IRAMs for
one iteration of the new loop bodies. Below are presented

only the unrolled inner loops.
The first loop may be as follows:

for (ii=1; ii<31 ; ii=ii+2) {
d[ii] = ((x[2*ii+1])<<1) - s_tmp0 — x[2*ii+2];
s[ii] = s_tmp0 + ((d_tmpO+d [ii])>>3);
d_tmp0 = d[ii];
s_tmpO = s[ii];
x[ii+1] = s[ii];
x[ii+33] = d[ii];
d[ii+1] = (x[2*({i+1)+1])<<1) — s_tmp0 — x[2*(ii+1)+2];
s[ii+1] = s_tmp0 + ((d_tmpO+d[ii+1])>>3);
d_tmp0 = d[ii+1];
s_tmp0 = s[ii+1];
x[ii+1] = s[ii+1];
x[ii+33] = d[ii+1];

The second loop may be as follows:

for (ii=1; ii<31; ii=ii+2) {
d[ii] = (x[128*1i+64]<<1) - s_tmp0 — x[128*(ii+1)];
s[ii] = s_tmp0 + ((d_tmpO+d[ii])>>3);
d_tmp0 = d[ii];
s_tmpO = s[ii];
x[ii*64] = s[ii];
x[(1i+32)*64] = d[ii];
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d[ii+1] = (x[128*(ii+1)+64]<<1) - s_tmp0 — x[128*(ii+2)];
s[ii+1] = s_tmp0 + ((d_tmpO+d[ii+1])>>3);

d_tmp0 = d[ii+1];

s_tmp0 = s[ii+1];

x[(ii+1)*64] = s[ii+1];

x[(1i+33)*64] = d[ii+1];

The third loop may be as follows:

for (ii=1; ii<15; ii=ii+2) {
d[ii] = ((x[2*ii+1])<<1) — s_tmpO - x[2*ii+2];
s[ii] = s_tmpO0 + ((d_tmpO+d[ii])>>3);
d_tmp0 = d[ii];
s_tmpO = s[ii];
x[ii] = s[ii];
x[ii+16] = d[ii];
d[ii+1] = (x[2*(ii+1)+1])<<1) - s_tmp0 — x[2*(ii+1)+2];
s[ii+1] = s_tmp0 +((d_tmpO+d[ii+1])>>3);
d_tmp0 = d[ii+1];
s_tmp0 = s[ii+1];
x[ii+1] = s[ii+1];
x[ii+17] = d[ii+1];

The fourth loop may be as follows:

for (ii=1; ii<15; ii=ii+2) {
d[ii] = (x[128*ii+64]<<1) — s_tmp0 — x[128*(ii+1)];
s[ii] = s_tmpO0 + ((d_tmpO + d[ii])>>3);
d_tmp0 = d[ii];
s_tmpO = s[ii];
x[1i*64] = s[ii];
x[(ii+16)*64] = d[ii];
d[ii+1] = (x[128*(ii+1)+64]<<1) - s_tmp0 — x[128*(ii+2)];
s[ii] = s_tmpO0 + ((d_tmpO+d[ii+1])>>3);
d_tmp0 = d[ii+1];
s_tmp0 = s[ii+1];
x[(ii+1)*64] = s[ii+1];
x[({i+17)*64 = d[ii+1];

The fifth loop may be as follows:

for (ii= 1; ii<7; ii=ii+2) {
d[ii] = (x[2*1i+1])<<1) - s_tmp0 — x[2*1i+2];
s[ii] = s_tmpO0 + ((d_tmpO+d[ii])>>3);
d_tmp0 = d[ii];
s_tmpO = s[ii];
x[ii] = s[ii];
x[1i+8] = d[ii];
d[ii+1] = (x[2*(ii+1)+1])<<1) - s_tmp0 — x[2*(ii+1)+2];
s[ii+1] = s_tmp0 + ((d_tmpO+d[ii+1])>>3);
d_tmp0 = d[ii+1];
s_tmp0 = s[ii+1];
x[ii+1] = s[ii+1];
x[ii+9] = d[ii+1];

The sixth loop may be as follows:

for (ii=1; ii<7; ii=ii+2) {
d[ii] = (x[128*ii+64]<<1) — s_tmp0 — x[128*(ii+1)];
s[ii] = s_tmpO0 + ((d_tmpO+d[ii])>>3);
d_tmp0 = d[ii];
s_tmp0 = s[ii];
x[1i*64] = s[ii];
x[(ii+8)*64] = d[ii];
d[ii+1] = (x[128*(ii+1)+64]<<1) — s_tmp0 — x[128*(ii+2)];



US 9,170,812 B2

135

-continued

s[ii] = s_tmpO0 + ((d_tmpO+d[ii+1])>>3);
d_tmp0 = d[ii+1];

s_tmp0 = s[ii+1];

x[(ii+1)*64] =

s[ii+1];

x[(1i+9)*64] = d[ii+1];

FIG. 60 is a dataflow graph ofthese loop bodies after a step
of tree balancing has been performed. The dataflow graph of
FIG. 60 corresponds to the first loop. To obtain the graphs for
the other loops, only the input and output data need to be
changed.

Each input and output data will occupy an IRAM. dO and sO
will be the only values in their IRAM, enabling the merge
operations to select between dO and s0 at the first iteration and
the feedback values for the other iterations. Once the pipeline
is filled, 8 values can be output in a cycle, corresponding to 4
values for array x. The same configuration is used for all
loops; only the data in the IRAMs differ. Below are result
tables for only the 2 first loops. The tables for the other loops
are the same.

For the first two loops, the following table is obtained, and
the expected speedup with respect to a standard superscalar
processor with 2 instructions issued per cycle is 1 5.3.

Parameter Value
Vector length 30
Reused data set size —
/O IRAMs 14
ALU 12
BREG 0
FREG 2
Data flow graph width 2
Data flow graph height 10
Configuration cycles 10+15=25
Ops Number
LD/ST (2 cycles) 14
ADDRCOMP (1 cycle) 2
ADD/SUB (1 cycle) 17
MUL (2 cycles) 0
SHIFT (1 cycle) 4
Cycles per iteration 51

Cycles needed for the loop (2-way) (51 *15)/2 =383

Data Processing

In embodiments of the present invention, support is pro-
vided for modern technologies of data processing and pro-
gram execution, such as multi-tasking, multi-threading,
hyper-threading, etc.

In embodiments of the present invention, data are inputted
into the data processing logic cell fields in response to the
execution of a load configuration by the data processing logic
cell fields, and/or data are stored from the data processing
logic cell fields by executing a store-configuration. Accord-
ingly, it is preferred to provide the load- and/or store-configu-
rations in such a way that the addresses of those memory cells
used are directly or indirectly generated within the data pro-
cessing logic cell fields, the addresses indicating those
memory cells and/or locations to which an access has to be
effected as a load- and/or store-access, i.e., a read- and/or
write-access. By configuring address generators within the
configuration it becomes possible to load a plurality of data
into the data processing logic cell fields where they can be
stored in IRAMs and/or within the internal cells such as
EALUs having registers and/or in other dedicated memory
and/or storage. The load- or store-configuration, respectively,

30

35

40

45

50

55

60

65

136

thus allows for a blockwise and thus almost data-stream-like
loading and storing of data, this being in particular much
faster than a single access and can be executed prior to or
during the execution of one or more data processing—and/or
data handling in a data altering manner—configurations pro-
cessing the preloaded data.

The data loading can take place, provided that that logic
cell fields are, as is typically the case, sufficiently large, in
small partial areas thereof, while other partial areas are
executing other tasks. For example, in other published docu-
ments by PACT is discussed a ping-pong-like data processing
that relies on memory cells provided on each side of the data
processing field. In a first processing step, data stream from
the memory on one side through the data processing field to
the memory on the other side of the data processing field. The
data are stored there as intermediate results while, if neces-
sary, the array is reconfigured. The intermediate results then
stream for further processing, etc. Here, a memory strip on
one side and/or memory part on one side can be preloaded
with data by a load configuration in one array part, while in
the memory part on the other side of the logic cell field data
are written out using a store-configuration. Such a simulta-
neous load-/store-way of data processing is possible even
without spatial distribution and/or separation of memory
areas in which data are retrieved and/or in which data are
stored.

It is possible to effect the data loading from a cache and/or
into a cache. In one embodiment, the external communication
to large memory banks may be handled via a cache control-
ling unit without having to provide for separate circuitry
within the data-processing logic cell field. The access in a
writing or reading manner to cache-memory-means typically
is very fast and has a small latency (if any). Also, typically a
CPU-Unit is, for example, via a load-/store-unit, coupled to
the cache so that access to data and an ex-change thereof
between the CPU-core and the data processing logic cell
fields can be effected quickly, block-wise, and such that not
every single datum needs to be transferred via a separate
instruction that must be fetched, for example, by the opcode-
fetcher of the CPU and processed therein.

This cache-coupling may be much better than the coupling
of'the data processing logic cell field to the AL.U with the CPU
via registers, if those registers communicate only via a load-/
store-unit with the cache, as is the conventional case.

In an embodiment of the present invention, a further data
connection may be provided to and/or from the load-/store-
unit of the, or one of the, sequential-CPU-units connected to
the data processing logic cell fields and/or their registers.

It is possible to address units via separate input/output
ports of the data processing logic cell field, which can in
particular be provided as a VPU or XPP, and/or to address the
data processing logic cells via one or more multiplexers
downstream a single port.

Besides the blockwise and/or streaming and/or random
mode access to cache areas in a writing and a reading manner
and/or to the load-/store-unit and/or the known connection to
the registers of a sequential CPU, in an embodiment of the
present invention, a connection is provided to an external
mass memory such as a RAM, a hard disc or any other data
exchange or input or output port such as an antenna, etc. In an
embodiment, separate ports may be provided for the access to
several of such units and/or memory means. Suitable drivers,
signal conditioning circuitry, and so forth may accordingly be
provided. Furthermore, although not exclusively for the han-
dling of a data stream streaming into the data processing logic
cell field and/or out of the data processing logic cell fields, the
logic cells of the field can include AL Us or EALUs, respec-



US 9,170,812 B2

137

tively, which can have at their input and/or output ports short,
fine-granularly configurably FPGA-like circuitries, for
example, to cut out 4-bit-blocks out of a continuous data
stream as is necessary, for example, for an MPEG-4-decod-
ing. This may be advantageous, for example, if a data stream
is to be input into the cell and is to be processed or prepro-
cessed without blocking larger PAE-units. In an embodiment
of the present invention, the ALU may be provided as an
SIMD-ALU. For example, a very broad data word having, for
example, a broad 32-bit-data-width may accordingly be split
via an FPGA-like stripe in front of the SIMD-ALU into eight
data words having, for example, a 0-bit-data-width that can
then be processed parallelly in the SIMD-ALU, increasing
the overall performance of the system significantly, provided
that the respect of applications are needed.

Furthermore, it is noted that when reference is being made
to FPGA-like pre- or post structures, it is not absolute neces-
sary to refer to 1-bit-granular devices. Instead, it would be
possible to provide finer-granular structures of a, for example,
4-bit, instead of the hyper-fine-granular 1-bit, structures. In
other words, the FPGA-like input- and/or output-structures,
in front of or data downstream of the ALU-unit. In particular,
SIMD-ALU-units may be configurable in such a way that
4-bit-data-words are always processed. It is also possible to
provide for a cascading, so that, for example, incoming
32-bit-data-width words are separated into 4-bit parts by 8-bit
FPGA-like structures in sequence of each other, then the four
8-bit data words are processed in four FPGA-like 8-bit-width
structures, then a second stripe of 8 separate 4-bit-wide
FPGA-like structures are provided, and, if necessary, sixteen
separate parallel 2-bit FPGA-like structures, for example, are
provide. If this is the case, a significant reduction of the
overhead compared to a hyper-fine-granular 1-bit FPGA-like
structure can be achieved. This may allow for significantly
reducing the configuration memory, etc., thus saving on sili-
con area.

It is noted that many of the coupling advantages may be
achieved using data block streams via a cache. However, it is
preferred in particular if the cache is built slice-wise and if an
access onto several slices, and in particular onto all slices, can
take place simultaneously. It may be advantageous if the data
processing logic cell field (XPP) and/or the sequential CPU
and/or CPUs process a plurality of threads, whether by way of
hyper-threading, multi-tasking, and/or multi-threading. It
may also be preferable to provide cache-storage with slice
access and/or slice access enabling control. For example,
every single thread can be assigned a separate slice, thereby
allowing that on processing that thread the respective cache
areas are accessed on the re-entry of the group of codes to be
processed. However, the cache need not necessarily be sepa-
rated into slices and, even if the cache is separated into slices,
not every single thread must be assigned a separate slice,
although this may be a highly preferred method. Furthermore,
it is to be noted that there may be cases where not all cache
areas are used simultaneously or temporarily at a given time.
Instead, it is to be expected that in typical data processing
applications, such as in hand-held mobile telephones, lap-
tops, cameras, etc., there may be periods during which not the
entire cache is needed. Accordingly, it may be highly advan-
tageous that certain cache-areas can be separated from the
power source in such a way that the energy consumption is
significantly reduced, in particular, close to or exactly to O.
This can be achieved by a power supply separation arrange-
ment adapted to separate cache slices from power. The sepa-
ration can either be effected by a down-clocking, separation
of clock-lines, and/or the overall separation of a power sup-
ply. In particular, it may be possible to provide for such a
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separation for every single cache slice, for example, by an
access identification arrangement adapted to identify whether
or not a thread, hyper-thread, task, or the like is currently
assigned to a respective cache slice. In case the access iden-
tification arrangement indicates and/or detects that this is not
the case, there may be a separation of slice from a clock-line
and/or even the power-line. It is also noted that on repower-
ing-up after a separation from power, it is possible to imme-
diately access the cache area. Thus, no significant delay by
switching an ON or OFF of the power is to be expected, as
long as the hardware is implemented with current semicon-
ductor technologies.

In embodiments of the present invention, although the
transfer of data and/or operands is possible in a block-wise
manner, no particular balancing is needed to ensure that
exactly the same times of execution of data processing steps
in the sequential CPU and the XPP and/or other data process-
ing logic cell fields are achieved. Instead, the processing may
frequently be independent, in particular in such a way that the
sequential CPU and the data processing logic cell field can be
considered as separate resources by a scheduler. This allows
for the immediate implementation of known data processing
programs splitting technologies such as multi-tasking, multi-
threading, and/or hyper-threading. A result of a data path
balancing not being necessary is that, for example, in a
sequential CPU a number of-pipeline stages may be included,
clock frequencies and/or schemes of clocking may be
achieved in a different way, etc. It is a particular advantage if
asynchronous logic is needed.

In an embodiment of the present invention, by configuring
a load- and a store-configuration into the data processing
logic cell fields, the data inside the field can be loaded into that
field or out of that field which is not controlled by the clock
frequency of the CPU, the performance of the opcode fetcher,
etc. In other words, the opcode fetcher does not bottle-neck
the data throughput to the data logic cell field without having
an only loose coupling.

In an example embodiment of the present invention, it is
possible to use the known CT or CM (commonly employed in
the XPP-unit, also given the fact that with one or more, even
hierarchically arranged XPP-fields having in some embodi-
ments their own CTs while simultaneously using one or more
sequential CPUs) as a quasi hyper-threading hardware-man-
agement unit, which may have the advantage that known
technologies, such as FILMO and others, become applicable
for the hardware support and management of hyper-thread-
ing, etc. It is alternatively possible, in particular in a hierar-
chical arrangement, to provide the configurations from the
opcode-fetcher of a sequential CPU via the coprocessing
interface, allowing for instantiation of an XPP and/or data
processing logic cell field call by the sequential CPU to effect
data processing on the data processing logic cell field. Cache
coupling and/or load and/or store configurations providing
address generators for loading and/or storing of data into the
data processing logic cell field or out of that field may provide
for the data exchange of the XPP. In other words, the copro-
cessor-like coupling to the data processing logic cell field
may be enabled while, simultaneously, a data stream-like
dataloading is effected via cache- and/or I/O-port coupling.

The method of coprocessor coupling, that is the indicated
coupling of the data processing logic cell field, may typically
result in the scheduling of the logic cell field taking place on
the sequential CPU and/or a supervising scheduler unit and/or
a respective scheduler means. In such a case, the threading
control and/or management practically takes place on the
scheduler and/or the sequential CPU. Although this is pos-
sible, this will not necessarily be the case where the easiest
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implementation of the invention is sought. The data process-
ing logic cell field can be called in a conventional manner,
such as has been the case in a standard coprocessor such as a
combination of 8086/8087.

In one example embodiment, independent of its configu-
ration, e.g., as a coprocessor interface, the configuration man-
ager acting as scheduler at the same time or in any other way,
it is possible to address memory within or in an immediate
vicinity of the data processing logic cell fields or under its
management, in particular memory within the XPP-architec-
ture, RAM-PAEs, etc. Accordingly, managing internal
memories such as a vector register may be advantageous.
That is, the data volumes loaded via the load configuration
may be stored vector-like in vector registers in the internal-
memory-cells, and thereafter said registers may be accessed
after loading and/or activating of a new configuration for
effecting the actual data processing. (It is noted that a data
processing configuration can be referred to as one configura-
tion even in a case where several distinct configurations are to
be processed simultaneously, one after the other or in a wave-
like modus.)

A vector register can be used to store results and/or inter-
mediate results in the internal or internally managed memory
cell elements. The vector register-like accessed memory in
the XPP can be used also, after reconfiguration of the pro-
cessing configuration by loading a store configuration in a
suitable manner, in a way that takes place again in a data-
stream-like manner, be it via an [/O-port directly streaming
data into external memory areas and/or into cache areas or out
of these which then can be accessed at a later stage by the
sequential CPU and/or other configurations executed on the
other data processing logic cell field, particularly in a data
processing logic cell field having produced said data in the
first place.

In one example embodiment, at least for certain data pro-
cessing results and/or intermediate results, for the memory
and/or memory registers into which the processed data are to
be stored, not an internal memory, but instead a cache area
having access reservation, particularly cache areas which are
organized in a slice-wise manner, can be used. This can have
the disadvantage of a larger latency, in particular if the paths
between the XPP and/or data processing logic cell fields to or
from the cache are of considerable length such that signal
transmission delays need to be considered. Still, this may
allow for additional store configurations to be avoided. It is
also noted that this way of storing data in a cache area
becomes, on the one hand, possible by placing the memory
into which data are stored physically close to the cache con-
troller and embodying that memory as a cache, but that alter-
natively and/or additionally the possibility exists to submit a
part of a data processing logic cell field memory area or
internal memory under the control of one or several cache-
memory controller(s), e.g., in the “RAM over PAE” case.

This may be advantageous if the latency in storing the data
processing results are to be kept small, while latency in
accessing the memory area serving as a quasi-cache to other
units will not be too significant in other cases.

In an embodiment of the present invention, the cache con-
troller of the known sequential CPU may address as a cache a
memory area that is, without serving for the purpose of data
exchange with a data processing logic cell field, physically
placed onto that data processing logic cell field and/or close to
that field. This may be advantageous in that, if applications
are run onto the data processing logic cell fields having a very
small local memory need and/or if only few other configura-
tions compared to the overall amount of memory space avail-
able are needed, these memory areas can be assigned to one or
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more sequential CPUs as cache or additional cache. In such a
case the cache controller may be adapted for the management
of'a cache area having a dynamically varying size.

A dynamic cache-size management and/or dynamic cache
management size means for the dynamic cache management
may take into account the work load on the sequential CPU
and/or the data processing logic cell fields. In other words, so
as to enable fast reconfiguration (whether by way of wave-
reconfiguration or in any other way), how many NOPs in a
given time unit are executed on the sequential CPU and/or
how many configurations are preloaded in the dynamically
reconfigurable field in the memory areas provided therefore
may be analyzed. The dynamic cache size or cache size man-
agement disclosed herein may be runtime dynamical. That is,
the cache controller may control a momentary cache size that
can be changed from clock-cycle to clock-cycle or from one
group of clock-cycles to another. It is also noted that the
access management of a data processing logic cell field with
access as internal memory, such as vector register, is possible.
While, as discussed above, a configuration management unit
can be provided, it is noted that such units and their way of
operation, allowing in particular the preloading or configura-
tions not yet needed, can be used very easily to effect the
multi-task operation and/or hyper-threading and/or multi-
threading, in particular for task- and/or thread- and/or hyper-
thread switches. During the runtime of a thread or a task, it is
possible to preload configurations for different tasks and/or
threads and/or hyper-threads into the PAE-array. This may
allows for a preload of configurations for a different task
and/or thread if the current thread or task cannot be executed,
for example because data are awaited, whether where they
have not yet been received, for example due to latencies, or
where a resource is blocked by another access. In case of the
configuration preloading for a different task or thread, a
switch or change becomes possible without the disadvantage
of a timing overhead due to the, for example, shadow-like
loaded configuration execution.

It is in principle possible to use this technique also in cases
where the most likely continuation of an execution is pre-
dicted and a prediction is missed. However, this way of opera-
tion may be particularly advantageous in cases free of predic-
tions. When using a pure sequential CPU and/or several pure
sequential CPUs, the configuration manager thus also acts as
and realizes a hyper-threading management hardware. It can
be considered as sufficient, in particular in case where the
CPU and/or several sequential CPUs have a hyper-threading
management, to keep partial circuitry elements such as the
FILMO discussed in DE 198 07 872, WO 99/44147, and WO
99/44120. In particular, in an embodiment of the present
invention, the configuration manager discussed in these docu-
ments with and/or without FILMO may be provided for use
with the hyper-threading management for one and/or more
purely sequential CPUs with or without coupling to a data
processing logic cell field.

It is noted that the plurality of CPUs can be realized with
known techniques, for example, such as those discussed DE
102 12 621 and PCT/EP 02/10572. 1t is also noted that DE 106
51075, DE 106 54 846, DE 107 04 728, WO 98/26356, WO
98/29952, and WO 98/35299 discuss how to implement
sequencers having ring- and/or random-access memory
means in data processing logic cell fields.

It is noted that a task-, thread- and/or hyper-thread switch
can be effected with the known CT-technology such that
performance-slices and/or time-slices are assigned to a soft-
ware implemented operating system scheduler by the CT,
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during which slices it is determined which parts of tasks
and/or threads are subsequently to be executed provided that
resources are available.

The following is an example. First, an address sequence is
generated for a first task during which the execution of a load
configuration loads data from a cache memory coupled to the
data processing logic cell field in the described manner. As
soon as the data are present, the execution of a second con-
figuration, the actual data-processing configuration, can be
started. This configuration can be preloaded as well since it is
certain that this configuration is to be executed provided that
no interrupts or the like cause task switches. In conventional
processes there is the known problem of the so-called cache-
miss, where data are requested that are not yet available in the
cache. If such a case occurs in the coupling according to
embodiments of the present invention, it is possible to switch
over to another thread, hyper-thread and/or task, in particular
that has been previously determined as the one to be executed
next, in particular by the software implemented operating
systems schedular and/or other hard- and/or software imple-
mented unit operating accordingly, and that has thus been
preloaded in an available configuration memory of the data
processing logic cell field, in particular preloaded in the back-
ground during the execution of another configuration, for
example the load configuration which has effected the load-
ing of data that are now awaited.

It is noted that it is possible to provide for separate con-
figuration lines, these being, e.g., separate from communica-
tion lines used in the connection of; in particular, the coarse-
granular data processing logic cells of the data processing
logic cell field. Then, if the configuration to which, due to the
task, thread, and/or hyper-thread switch, processing has been
switched over has been executed, and in particular has been in
the preferable non-dividable, uninterruptable, and hence
quasi atomar configuration executed until its end, a further
other configuration as predetermined by that scheduler, par-
ticularly said operating system-like scheduler, and/or a con-
figuration for which the assigned load configuration has been
executed may be executed. Prior to the execution of a pro-
cessing configuration for which a load configuration has been
executed previously, a test can be performed to determine
whether or not the respective data have been streamed into the
array, e.g., checking if the latency time which typically occurs
has lapsed and/or the data are actually present.

In other words, latency times which occur as configura-
tions are not yet preloaded, data have not yet been loaded,
and/or data have not yet been stored, are bridged and/or
covered by executing threads, hyper-threads, and/or tasks
which have been preconfigured and which process data that
are already available or can be written to resources that are
available for writing thereto. In this way, latency times are
covered and/or bridged and, provided a sufficient number of
threads, hyper-threads, and/or tasks are to be executed, the
data processing logic cell field can have an almost 100% load.

In embodiments of the present invention, it is possible to
realize a real time system despite the coupling of the array to
a sequential CPU, in particular, while still having a data
stream capability. In order to ensure real time capabilities it
must be guaranteed that incoming data or interrupts signaling
incoming data are reacted upon without exceeding an allowed
maximum time. This can be effected by causing a task switch
on an interrupt and/or, for example, if the interrupts have a
certain priority, by determining that a certain interrupt is
currently to be ignored, which has to be determined within a
certain time as well. A task switch in such systems capable of
real time processing will thus typically be possible in one of
three instances, which are when a task has run for a certain
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time (watch dog-principle), at non-availability of a resource,
whether due to a blockade, due to another access, or due to
latencies, and/or at the occurrence of interrupts.

A way of implementing one of these variants may ensure
the real time capability. In a first alternative, one resource
which is under the control of the CT or scheduler switches
over to processing the interrupt. If the allowed response time
to a certain interrupt is so long that the configuration currently
configured can be executed without interruption this is
uncritical, particularly in view of that the interrupt handling
configuration can be preloaded. The selection of the interrupt
handling configuration to be preloaded can be carried out by
the CT or in any other way. It is also possible to restrict the
runtime of the configuration on the resource to which the
interrupt processing has been assigned. Regarding this, see
PCT/DE 03/000942.

Ifthe system has to react faster if an interrupt occurs, in one
embodiment, a single resource, for example, a separate XPP-
unit or parts of a data processing logic cell field, may be
reserved for the execution of interrupt handling routines. In
this case, it is also possible to preload interrupt handling
routines for interrupts that are particularly critical. It is also
possible to immediately start loading of an interrupt handling
routine once the interrupt occurs. The selection of the con-
figuration necessary for a respective interrupt, can be effected
by triggering, wave-processing, etc.

By the methods described, it becomes possible to provide
for an instantaneous reaction to the interrupt by using load/
store configurations in order to obtain a code-reentrancy.
Following every single or every other data processing con-
figuration, for example every five or ten data processing con-
figurations, a store configuration may be executed and then a
load configuration accessing the very memory arrays in
which data have just been written may be carried out. Then,
only that the memory areas used by the store configuration
remain untouched has to be ensured until the configuration or
group of configurations for which the preloading has been
effected has been finished by completely executing a further
store configuration. In this way of intermediately carried out
load/store configurations and simultaneous protection of not
yet overaged store-memory areas, code-reentrancy is gener-
ated very easily, for example in compiling a program. Here,
resource reservation may be advantageous as well.

Further, in one example embodiment of the present inven-
tion, a reaction to an interrupt may include using interrupt
routines where code for the data processing logic cell field is
forbidden. This embodiment may be particularly suited for an
instance where one of the resources available is a sequential
CPU. In other words, an interrupt handling routine is
executed only on a sequential CPU without calling data pro-
cessing steps or routines making use of a data processing
logic cell field. This may guarantee that the processing on the
data processing logic cell field is not interrupted. Then, fur-
ther processing on the data processing logic cell field can be
effected following a task switch. Although the actual interrupt
routine does not include any data processing logic cell field
code such as XPP-code, it can still be ensured that, at a later
time no more relevant to real time processing capabilities, the
data processing logic cell field reacts to an interrupt and/or a
real time request determined, to state, information and/or data
using the data processing logic cell field.

Compiling an HLL Subset Extended by Port Access Func-
tions to an RDFP

The following describes a method, according to an
embodiment of the present invention, for compiling a subset
of a high-level programming language (HLL), e.g., C or
FORTRAN, extended by port access functions to a reconfig-
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urable data-flow processor (RDFP). The program may be
transformed to a configuration of the RDFP.

This method can be used as part of an extended compiler
for a hybrid architecture including a standard host processor
and a reconfigurable data-flow coprocessor. The extended
compiler handles a full HLL, e.g., standard ANSI C. It maps
suitable program parts, such as inner loops, to the coprocessor
and the rest of the program to the host processor. It is also
possible to map separate program parts to separate configu-
rations. However, these extensions are not the subject of the
discussion below.

Compilation Flow

The compilation method may include a frontend phase, a
control/dataflow graph generation phase, and a configuration
code phase.

Frontend

The compiler may use a standard frontend which translates
the input program, (e.g., a C program) into an internal format
including an abstract syntax tree (AST) and symbol tables.
The frontend may also perform well-known compiler optimi-
zations, e.g., constant propagation, dead code elimination,
common subexpression elimination, etc. For details regard-
ing this, see A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers
Principles, Techniques, and Tools,” Addison-Wesley 1986.
The SURF compiler is an example of a compiler providing
such a frontend. Regarding the SURF compiler, see The Stan-
ford SUIT Compiler Group Homepage at http://suif.stanford-
.edu.

Control/Dataflow Graph Generation

Next, the program may be mapped to a control/dataflow
graph (CDFG) including connected RDFP functions. This
phase is discussed in more detail below.

Configuration Code Generation

Finally, the last phase may directly translate the CDFG to
configuration code used to program the RDFP. For PACT
XPP™ Cores, the configuration code may be generated as an
NML file.

Configurable Objects and Functionality of an RDFP

A possible implementation of the RDFP architecture is a
PACT XPP™ Core. Discussed herein are only the minimum
requirements for an RDFP for this compilation method to
work. The only data types considered are multi-bit words
called data and single-bit control signals called events. Data
and events are always processed as packets. See that which is
discussed below under the heading ‘“Packet-based Commu-
nication Network.” Event packets are called 1-events or
0O-events, depending on their bit-value.

Configurable Objects and Functions

An RDFP includes an array of configurable objects and a
communication network. Each object can be configured to
perform certain functions, such as those listed below. It may
perform the same function repeatedly until the configuration
is changed. The array need not be completely uniform, i.e.,
not all objects need to be able to perform all functions. For
example, a RAM function can be implemented by a special-
ized RAM object that cannot perform any other functions. It
is also possible to combine several objects to a “macro” to
realize certain functions. For example, several RAM objects
can be combined to obtain a RAM function with larger stor-
age.

FIG. 61 is a graphical representation of functions for pro-
cessing data and event packets that can be configured into an
RDFP. The functions are as follows.

ALUJopcode]: ALUs perform common arithmetic and
logical operations on data. ALU functions (“opcodes™)
must be available for all operations used in the HLL.
Otherwise, programs including operations that do not
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have ALU opcodes in the RDFP must be excluded from
the supported HLL subset or substituted by “macros” of
existing functions. ALU functions have two data inputs,
A and B, and one data output, X. Comparators have an
event output U instead of the data output. They produce
a 1-event if the comparison is true, and a 0-event other-
wise.

CNT: CNT is a counter function which has data inputs, LB,
UB, and INC (lower bound, upper bound, and increment), and
data output X (counter value). A packet at event input START
starts the counter, and event input NEXT causes the genera-
tion of the next output value (and output events) or causes the
counter to terminate if UB is reached. If NEXT is not con-
nected, the counter may count continuously. The output
events U, V, and W have the following functionality. For a
counter counting N times, N-1 0O-events and one 1-event may
be generated at output U. At output V, N O-events may be
generated, and at output W, N 0-events and one 1-event may
be created. The 1-event at W is only created after the counter
has terminated, i.e., a NEXT event packet was received after
the last data packet was output.

RAM[size]: The RAM function may store a fixed number
of data words (“size”). It has a data input RD and a data
output OUT for reading at address RD. Event output
ERD signals completion of the read access. For a write
access, data inputs WR and IN (address and value) and
data output OUT may be used. Event output EWR sig-
nals completion of the write access. ERD and EWR
always generate O-events. Note that external RAM can
be handled as RAM functions exactly like internal
RAM.

GATE: A GATE may synchronize a data packet at input A
and an event packet at input E. When both inputs have
arrived, they may both be consumed. The data packet
may be copied to output X, and the event packet to
output U.

MUX: An MUX function may have 2 data inputs, A and B,
an event input, SEL, and a data output, X. If SEL.
receives a 0-event, input A may be copied to output X,
and input B may be discarded. For a 1-event, B may be
copied, and A may be discarded.

MERGE: A MERGE function may have 2 data inputs, A
and B, an event input SEL, and a data output X. If SEL.
receives a 0-event, input A may be copied to output X,
but input B is not discarded. The packet may be left at the
input B instead. For a 1-event, B may be copied and A
left at the input.

DEMUX: A DEMUX function may have one data input A,
an event input SEL, and two data outputs X and Y. If SEL.
receives a 0-event, input A may be copied to output X,
and no packet is created at output Y. For a 1 -event, A may
be copied to Y, and no packet is created at output X.

MDATA: A MDATA function may multiplicate data pack-
ets. It may have a data input A, an event input SEL, and
a data output X. If SEL receives a 1-event, a data packet
at A may be consumed and copied to output X. For all
subsequent O-events at SEL, a copy of the input data
packet may be produced at the output without consum-
ing new packets at A. Only if another 1-event arrives at
SEL, the next data packet at A may be consumed and
copied. It is noted that this can be implemented by a
MERGE with special properties on XPP™.

INPORT[name]: An IMPORT function may receive data
packets from outside the RDFP through input port
“name” and may copy them to data output X. If a packet
was received, a 0-event may be produced at event output
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U, too. (It is noted that this function can only be config-
ured at special objects connected to external busses.)

OUTPORT[name]: An OUTPORT function may send data
packets received at data input A to the outside of the
RDFP through output port “name.” If a packet was sent,
a 0-event may be produced at event output U, too. (It is
noted that this function can only be configured at special
objects connected to external busses.)

Additionally, the following functions manipulate only

event packets:
O-FILTER, 1-FILTER: A FILTER may have an input E and
an output U. A 0-FILTER may copy a 0-event from E to
U, but 1-EVENTs at E are discarded. A 1-FILTER may
copy l-events and discard 0-events.
INVERTER: An INVERTER may copy all events from
input E to output U, but invert their values.
0-CONSTANT, 1-CONSTANT: 0-CONSTANT may copy
all events from input E to output U, but may change them
all to value 0. 1-CONSTANT may change them all to
value 1.
ECOMB: ECOMB may combine two or more inputs E1,
E2, E3.. ., producing a packet at output U. The output
may be a 1-event if and only if one or more of the input
packets are 1-events (logical or). A packet must be avail-
able at all inputs before an output packet is produced. It
is noted that this function may be implemented by the
EAND operator on the XPP™.
ESEQ[seq]: An ESEQ may generate a sequence “seq” of
events, e.g., “0001,” at its output U. If it has an input
START, one entire sequence may be generated for each
event packet arriving at U. The sequence is only repeated
if the next event arrives at U. However, if START is not
connected, ESEQ may constantly repeat the sequence.
It is noted that the ALU, MUX, DEMUX, GATE and
ECOMB functions may behave like their equivalents in con-
ventional dataflow machines. In this regard, see A. H. Veen,
“Dataflow Architecture,” ACM Computing Surveys, 18(4)
(December 1986); and S. J. Allan & A. E. Oldehoeft, “A Flow
Analysis Procedure for the Translation of High-Level Lan-
guages to a Data Flow Language,” IEEE Transactions on
Computers, C-29(9):826-831 (September 1980).
Packet-Based Communication Network

The communication network of an RDFP can connect out-
puts of one object, (i.e., its respective function), to the input(s)
of one or several other objects. This is usually achieved by
busses and switches. By placing the functions properly on the
objects, many functions can be connected arbitrarily up to a
limit imposed by the device size. As mentioned above, all
values may be communicated as packets. A separate commu-
nication network may exist for data and event packets. The
packets may synchronize the functions as in a dataflow
machine with acknowledge. In this regard, see A. H. Veen,
supra. That is, the function only executes when all input
packets are available (apart from the non-strict exceptions as
described above). The function may also stall if the last output
packet has not been consumed. Therefore, a data-flow graph
mapped to an RDFP may self-synchronize its execution with-
outthe need for external control. Only if two or more function
outputs (data or event) are connected to the same function
input (“N to 1 connection™), is the self-synchronization dis-
abled. It is noted that on XPP™ Cores, an “N to 1 connection”
for events is realized by the EOR function, and, for data, by
just assigning several outputs to an input. The user has to
ensure that only one packet arrives at a time in a correct
CDFG. Otherwise, a packet might get lost, and the value
resulting from combining two or more packets is undefined.
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However, a function output can be connected to many func-
tion inputs (“1 to N connection”) without problems.
There are some special cases:
A function input can be preloaded with a distinct value
5 during configuration. This packet may be consumed like
a normal packet coming from another object.

A function input can be defined as constant. In this case, the
packet at the input may be reproduced repeatedly for
each function execution.

An RDFP may require register delays in the dataflow.
Otherwise, very long combinational delays and asynchro-
nous feedback is possible. It is assumed that delays are
inserted at the inputs of some functions (like for most ALLUs)
and in some routing segments of the communication network.
It is noted that registers may change the tuning, but not the
functionality, of a correct CDFG.

Configuration Generation
Language Definition

The following HLL features are not supported by the
method described herein:

pointer operations

library calls, operating system calls (including standard
1/O functions)

20

25 recursive function calls (non-recursive function calls can
be eliminated by function in-lining and therefore are not
considered herein.)

All scalar data types may be converted to type integer.
o Integer values may be equivalent to data packets in the

RDFP. Arrays (possibly multi-dimensional) are the only com-
posite data types considered.

The following additional features are supported:

INPORTS and OUTPORTS can be accessed by the HLLL
functions getstream(name, value) and putstream(name,
value), respectively.

Mapping of High-Level Language Constructs

This method may convert an HLL program to a CDFG
including the RDFP functions defined in the discussion under
the heading “Configurable Objects and Functions.” Before
the processing starts, all HLL program arrays may be mapped
to RDFP RAM functions. An array x may be mapped to RAM
RAM(x). If several arrays are mapped to the same RAM, an
offset may be assigned, too. The RAMS may be added to an
initially empty CDFG. There must be enough RAMS of suf-
ficient size for all program arrays.

The CDFG may be generated by a traversal of the AST of
the HLL program. It may process the program statement by
statement and descend into the loops and conditional state-
ments as appropriate. The following two pieces of informa-
tion may be updated at every program point, (which refers to
a point between two statements or before the beginning or
after the end of a program component such as a loop or a
conditional statement), during the traversal:

START may point to an event output of an RDFP function.
This output may deliver a 0-event whenever the program
execution reaches this program point. At the beginning,
a 0-CONSTANT preloaded with an event input may be
added to the CDFG. (It may deliver a 0-event immedi-
ately after configuration.) START may initially point to
its output. This event may be used to start the overall
program execution. A START,,,,, signal generated aftera
program part has finished executing may be used as new
START signal for the following program parts, or it may
signal termination of the entire program. The START
events may guarantee that the execution order of the
original program is maintained wherever the data depen-
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dencies alone are not sufficient. This scheduling scheme
may be similar to a one-hot controller for digital hard-
ware.

VARLIST may be a list of {variable, function-output}
pairs. The pairs may map integer variables or array ele-
ments to a CDFG function’s output. The first pair for a
variable in VARLIST may contain the output of the
function which produces the value of this variable valid
at the current program point. New pairs may be always
added to the front of VARLIST. The expression
VARDEF (var) may refer to the function-output of the
first pair with variable var in VARLIST. With respect to
this way of using a VARLIST, see D. Galloway, “The
transmogrifier C hardware description language and
compiler for FPGAs,” Proc. FPGAs for Custom Com-
puting Machines, IEEE Computer Society Press, 1995,
at 136-44.

Below are systematically listed HLL, program components
and descriptions of how they may be processed, thereby alter-
ing the CDFG, START, and VARLIST.

Integer Expressions and Assignments

Straight-line code without array accesses can be directly
mapped to a data-flow graph. One ALU may be allocated for
each operator in the program. Because of the self-synchroni-
zation of the ALUs, no explicit control or scheduling is
needed. Therefore processing these assignments does not
access or alter START. The data dependencies (as they would
be exposed in the DAG representation of the program, in
regard to which see A. V. Aho et al., supra) may be analyzed
through the processing of VARLIST. These assignments may
synchronize themselves through the data-flow. The data-
driven execution may automatically exploit the available
instruction level parallelism.

All assignments may evaluate the right-hand side (RHS) or
source expression. This evaluation may result in a pointer to
a CDFG object’s output (or pseudo-object as defined below).
For integer assignments, the left-hand side (LHS) variable or
destination may be combined with the RHS result object to
form a new pair {LHS, result(RHS)} which may be added to
the front of VARLIST.

For the following examples, C syntax is used. The simplest
statement may be a constant assigned to an integer:

a=5;

It does not change the CDFG, but adds {a, 5} to the front of
VARLIST. The constant 5 is a “pseudo-object” which only
holds the value, but does not refer to a CDFG object. Now
VARDEF(a) equals 5 at subsequent program points before a
is redefined.

Integer assignments can also combine variables already
defined and constants:

b=a*2+3;

In the AST, the RHS is already converted to an expression
tree. This tree may be transformed to a combination of old and
new CDFG objects (which are added to the CDFG) as fol-
lows. Each operator (internal node) of the tree may be sub-
stituted by an ALU with the opcode corresponding to the
operator in the tree. If a leaf node is a constant, the ALU’s
input may be directly connected to that constant. If aleaf node
is an integer variable var, it may be looked up in VARLIST,
i.e., VARDEF (var) is retrieved. Then VARDEF (var) (an out-
put of an already existing object in CDFG or a constant) may
be connected to the ALU’s input. The output of the ALU
corresponding to the root operator in the expression tree is
defined as the result of the RHS. Finally, a new pair {LHS,
result(RHS)} may be added to VARLIST. If the two assign-
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ments above are processed, the CDFG with two ALUs, as
shown in FIG. 62, may be created. Itis noted that the input and
output names can be deduced from their position. It is further
noted that the compiler frontend would normally have sub-
stituted the second assignment by b=13 (constant propaga-
tion). For the simplicity, no frontend optimizations are con-
sidered in this and the following examples. Outputs occurring
in VARLIST are labeled by Roman numbers. After these two
assignments, VARLIST=[{b, 1}, {a, 5}]. (The front of the list
is on the left side.) Note that all inputs connected to a constant
(whether direct from the expression tree or retrieved from
VARLIST) must be defined as constant. Inputs defined as
constants have a small ¢ next to the input arrow in FIG. 62.
Conditional Integer Assignments

For conditional if-then-else statements including only inte-
ger assignments, objects for condition evaluation may be
created first. The object event output indicating the condition
result may be kept for choosing the correct branch result later.
Next, both branches may be processed in parallel, using sepa-
rate copies VARLIST1 and VARLIST2 of VARLIST. (VARL-
IST itself is not changed.) Finally, for all variables added to
VARLIST1 or VARLIST2, a new entry for VARLIST may be
created (combination phase). The valid definitions from
VARLIST1 and VARLIST2 may be combined with a MUX
function, and the correct input may be selected by the condi-
tion result. For variables only defined in one of the two
branches, the multiplexer may use the result retrieved from
the original VARLIST for the other branch. If the original
VARLIST does not have an entry for this variable, a special
“undefined” constant value may be used. However, in a func-
tionally correct program, this value will never be used. As an
optimization, only variables live (see A. V. Aho et al., supra)
after the if-then-else structure need to be added to VARLIST
in the combination phase. A variable is live at a program point
if its value is read at a statement reachable from the point
without intermediate redefinition.

Consider the above with respect to the following example:

i=7;
a=3;

if (i< 10){
a=>5;
c=7;

else{
c=a-1;
d=0;

¥

For this example, FIG. 63 shows the resulting CDFG.
Before the if-then-else construct, VARLIST=[{a, 3}, {i, 7}].
After processing the branches, for the then branch, VARL-
IST1=[{c, 7}, {a, 5}, {a, 3}, {i, 7}], and for the else branch,
VARLIS72=[{d, 0}, {c, 1}, {a,3}, {i, 7}]. After combination,
VARLIST=[{d, 11}, {c, 111}, {a, IV}, {a, 3}, {1, 7}].

Note that case- or switch-statements can be processed, too,
since they can be converted, without loss of generality, to
nested if-then-else statements.

Processing conditional statements this way does not
require explicit control and does not change START. Both
branches may be executed in parallel and synchronized by the
dataflow. It is possible to pipeline the datatlow for optimal
throughput.

General Conditional Statements

Conditional statements including either array accesses (see
the discussion below under the heading “Array Accesses™) or
inner loops cannot be processed as described above under the
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heading “Conditional Integer Assignments.” Data packets
must be sent only to the active branch. This may be achieved
by the implementation shown in FIG. 64, similar to the
method presented in S. J. Allan et al., supra.

A dataflow analysis may be performed to compute used
sets use and defined sets def (see A. V. Aho et al., supra) of
both branches. A variable is used in a statement (and hence in
a program region including the statement) if its value is read.
A variable is defined in a statement (or region) if a new value
is assigned to it. For the current VARLIST entries of all
variables in IN=use(thenbody)Udef (thenbody)Uuse(else-
body)Udet (elsebody)Uuse(header), DEMUX functions
controlled by the IF condition are inserted. It is noted that
arrows with double lines in FIG. 64 denote connections for all
variables in IN, and the shadowed DEMUX function stands
for several DEMUX functions, one for each variable in IN.
The DEMUX functions forward data packets only to the
selected branch. New lists VARLIST1 and VARLIST2 are
compiled with the respective outputs of these DEMUX func-
tions. The then-branch is processed with VARLIST1, and the
else branch with VARLIST2. Finally, the output values are
combined. OUT includes the new values for the same vari-
ables as in IN. Since only one branch is ever activated, there
will not be a conflict due to two packets arriving simulta-
neously. The combinations will be added to VARLIST after
the conditional statement. If the IF execution shall be pipe-
lined, MERGE opcodes for the output must be inserted, too.
They are controlled by the condition like the DEMUX func-
tions.

With respect to that which is discussed in S. J. Allan et al.,
supra, the following extension, corresponding to the dashed
lines of FIG. 64 may be added in an embodiment of the
present invention in order to control the execution as men-
tioned above with START events. The START input may be
ECOMB combined with the condition output and connected
to the SEL input of the DEMUX functions. The START
inputs of thenbody and elsebody may be generated from the
ECOMB output sent through a 1-FILTER and a 0-CON-
STANT or through a 0-FILTER, respectively. (The 0-CON-
STANT may be required since START events must always be
0-events.) The overall START,,,, output may be generated by
a simple “2 to 1 connection” of thenbody’s and elsebody’s
START,,,, outputs. With this extension, arbitrarily nested
conditional statements or loops can be handled within then-
body and elsebody.

WHILE Loops

WHILE loops may be processed similarly to the scheme
presented in S. J. Allan et al., supra (see FIG. 65). Double line
connections and shadowed MERGE and DEMUX functions
represent duplication for all variables in IN. Here IN=use
(whilebody) U def (whilebody) U use(header). The WHILE
loop may execute as follows. In the first loop iteration, the
MERGE functions may select all input values from VARLIST
at loop entry (SEL=0). The MERGE outputs may be con-
nected to the header and the DEMUX functions. If the while
condition is true (SEL=1), the input values may be forwarded
to the whilebody and otherwise to OUT. The output values of
the while body may be fed back to whilebody’s input via the
MERGE and DEMUX operators as long as the condition is
true. Finally, after the last iteration, they may be forwarded to
OUT. The outputs may be added to the new VARLIST. It is
noted that the MERGE function for variables not live at the
loop’s beginning and the whilebody’s beginning can be
removed since its output is not used. For these variables, only
the DEMUX function to output the final value is required. It
is further noted that the MERGE functions can be replaced by
simple “2 to 1 connections” if the configuration process guar-
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antees that packets from IN1 always arrive at the DEMUX’s
input before feedback values arrive.

With respect to that which is discussed in S. J. Allan et al.,
supra, the following two extensions, corresponding to the
dashed lines in FIG. 65, may be added in an embodiment of
the present invention.

In S. J. Allan et al., supra, the SEL input of the MERGE
functions is preloaded with 0. Thus, the loop execution
begins immediately and can be executed only once.
Instead, in an embodiment of the present invention, the
START input may be connected to the MERGE’s SEL
input (“2 to 1 connection” with the header output). This
may allow control of the time of the start of the loop
execution and may allow its restart.

The whilebody’s START input may be connected to the
header output, sent through a 1-FILTER/0O-CONSTANT
combination as above (generates a 0-event for each loop
iteration). By ECOMB-combining whilebody’s
START,,,, output with the header output for the
MERGE functions’ SEL inputs, the next loop iteration is
only started after the previous one has finished. The
while loop’s START,,,,, output is generated by filtering
the header output for a 0-event.

With these extensions, arbitrarily nested conditional state-

ments or loops can be handled within whilebody.
FOR Loops

FOR loops are particularly regular WHILE loops. There-
fore, they may handled as explained above. However, an
RDFP according to an embodiment of the present invention
may feature a special counter function CNT and a data packet
multiplication function MDATA, which can be used for a
more efficient implementation of FOR loops. This new FOR
loop scheme is shown in FIG. 66.

A FOR loop may be controlled by a counter CNT. The
lower bound (LB), upper bound (UB), and increment (INC)
expressions may be evaluated like any other expression (see,
for example, that which is discussed above under the heading
“Integer Expressions and Assignments,” and that which is
discussed below under the heading “Array Accesses™) and
connected to the respective inputs.

As opposed to WHILE loops, a MERGE/DEMUX combi-
nationis only required for variables in IN1=def(forbody), i.e.,
those defined in forbody. It is noted that the MERGE func-
tions can be replaced by simple “2 to 1 connections” as for
WHILE loops if the configuration process guarantees that
packets from IN1 always arrive at the DEMUXs input before
feedback values arrive. IN1 does not include variables which
are only used in forbody, LB, UB, or INC, and also does not
include the loop index variable. Variables in IN1 may be
processed as in WHILE loops, but the MERGE and DEMUX
functions” SEL input is connected to CNT’s W output. (The
W output may do the inverse of a WHILE loop’s header
output. It may output a 1-event after the counter has termi-
nated. Therefore, the inputs of the MERGE functions and the
outputs of the DEMUX functions may be swapped here, and
the MERGE functions’ SEL inputs may be preloaded with
1-events.)

CNT’s X output may provide the current value of the loop
index variable. If the final index value is required (live) after
the FOR loop, it may be selected with a DEMUX function
controlled by CNT’s U event output (which may produce one
event for every loop iteration).

Variables in IN2=use(forbody)\def(forbody), i.e., those
defined outside the loop and only used (but not redefined)
inside the loop, may be handled differently. Unless it is a
constant value, the variable’s input value (from VARLIST)
must be reproduced in each loop iteration since it is consumed
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in each iteration. Otherwise, the loop would stall from the
second iteration onwards. The packets may be reproduced by
MDATA functions, with the SEL inputs connected to CNT’s
U output. The SEL inputs must be preloaded with a 1-event to
select the first input. The 1-event provided by the last iteration
may select a new value for the next execution of the entire
loop.

The following control events (corresponding to the dotted
lines in FIG. 66) are similar to the WHILE loop extensions,
but simpler. CNT’s START input may be connected to the
loop’s overall START signal. START,,,, may be generated
from CNT’s W output, sent through a 1-FILTER and 0-CON-
STANT. CNT’s V output may produce one 0-event for each
loop iteration and may therefore be used as forbody’s START.
Finally, CNT’s NEXT input may be connected to forbody’s
START,,,, output.

For pipelined loops (as defined below under the heading
“Vectorization and Pipelining”), loop iterations may be
allowed to overlap. Therefore, CNT’s NEXT input need not
be connected. Now the counter may produce index variable
values and control events as fast as they can be consumed.
However, in this case CNT’s W output in not sufficient as
overall START,,,,, output since the counter terminates before
the last iteration’s forbody finishes. Instead, START,,,, may
be generated from CNT’s U output ECOMB-combined with
forbody’s START,,,, output, sent through a 1-FILTER/O-
CONSTANT combination. The ECOMB may produce an
event after termination of each loop iteration, but only the last
event is a 1-event because only the last output of CNT’s U
output is a 1-event. Thus, this event may indicate that the last
iteration has finished. A FOR loop example compilation with
and without pipelining is provided below under the heading
“More Examples.”

As for WHILE loops, these methods allow for arbitrarily
processing nested loops and conditional statements. The fol-
lowing advantages over WHILE loop implementations may
be achieved:

One index variable value may be generated by the CNT

function each clock cycle. This is faster and smaller than
the WHILE loop implementation which allocates a
MERGE/DEMUX/ADD loop and a comparator for the
counter functionality.

Variables in IN2 (only used in forbody) may be reproduced

in the special MDATA functions and need not go through

a MERGE/DEMUX loop. This is again faster and

smaller than the WHILE loop implementation.
Vectorization and Pipelining

In the embodiments described above, CDFGs are gener-
ated that perform the HLL program’s functionality on an
RDFP. However, the program execution is unduly sequential-
ized by the START signals. In some cases, innermost loops
can be vectorized. This means that loop iterations can overlap,
leading to a pipelined dataflow through the operators of the
loop body. The Pipeline Vectorization technique (see Markus
Weinhardt et al., “Pipeline Vectorization,” supra) can be eas-
ily applied to the compilation method of embodiments of the
present invention. As mentioned above, for FOR loops, the
CNT’s NEXT input may be removed so that CNT counts
continuously, thereby overlapping the loop iterations.

All loops without array accesses can be pipelined since the
dataflow automatically synchronizes loop-carried dependen-
cies, i.e., dependencies between a statement in one iteration
and another statement in a subsequent iteration. Loops with
array accesses can be pipelined if the array, (i.e., RAM),
accesses do not cause loop-carried dependencies or can be
transformed to such a form. In this case, no RAM address is
written in one iteration and read in a subsequent iteration.
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Therefore, the read and write accesses to the same RAM may
overlap. This degree of freedom is exploited in the RAM
access technique described below. Especially for dual-ported
RAM, it leads to considerable performance improvements.
Array Accesses

In contrast to scalar variables, array accesses have to be
controlled explicitly in order to maintain the program’s cor-
rect execution order. As opposed to normal dataflow machine
models (see A. H. Veen, supra), an RDFP does not have a
single address space. Instead, the arrays may be allocated to
several RAMS. This leads to a different approach to handling
RAM accesses and opens up new opportunities for optimiza-
tion.

To reduce the complexity of the compilation process, array
accesses may be processed in two phases. Phase 1 may use
“pseudo-functions” for RAM read and write accesses. A
RAM read function may have an RD data input (read address)
and an OUT data output (read value), and a RAM write
function may have WR and IN data inputs (write address and
write value). Both functions are labeled with the array the
access refers to, and both may have a START event input and
a U event output. The events may control the access order. In
Phase 2, all accesses to the same RAM may be combined and
substituted by a single RAM function. This may involve
manipulating the data and event inputs and outputs such that
the correct execution order is maintained and the outputs are
forwarded to the correct part of the CDFG.

Phase 1:

Since arrays may be allocated to several RAMs, only
accesses to the same RAM have to be synchronized. Accesses
to different RAMs can occur concurrently or even out of
order. In case of data dependencies, the accesses may self-
synchronize automatically. Within pipelined loops, not even
read and write accesses to the same RAM have to be synchro-
nized. This may be achieved by maintaining separate START
signals for every RAM or even separate START signals for
RAM read and RAM write accesses in pipelined loops. At the
end of a basic block, which is a program part with a single
entry and a single exit point, i.e., a piece of straight-line code,
(see A. V. Aho et al., supra), all START,,, outputs must be
combined by an ECOMB to provide a START signal for the
next basic block, which guarantees that all array accesses in
the previous basic block are completed. For pipelined loops,
this condition can even be relaxed. Only after the loop exit, all
accesses have to be completed. The individual loop iterations
need not be synchronized.

First the RAM addresses may be computed. The compiler
frontend’s standard transformation for array accesses can be
used, and a CDFG function’s output may be generated which
may provide the address. If applicable, the offset with respect
to the RDFP RAM (as determined in the initial mapping
phase) must be added. This output may be connected to the
pseudo RAM read’s RD input (for a read access) or to the
pseudo RAM write’s WR input (for a write access). Addition-
ally, the OUT output (read) or IN input (write) may be con-
nected. The START input may be connected to the variable’s
START signal, and the U output may be used as START,,,, for
the next access.

To avoid redundant read accesses, RAM reads may also be
registered in VARLIST. Instead of an integer variable, an
array element may be used as the first element of the pair.
However, a change in a variable occurring in an array index
invalidates the information in VARLIST. It must then be
removed from it.

The following example with two read accesses compiles to
the intermediate CDFG shown in FIG. 67. The START sig-
nals refer only to variable a. STOP1 is the event connection
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which synchronizes the accesses. Inputs START (0ld), 1, and
j should be substituted by the actual outputs resulting from the
program before the array reads.

x=afi];
Y=afl];

I=X+Y;

FIG. 68 shows the translation of the write access a[i]=x.
Phase 2:

The pseudo-functions of all accesses may be merged to the
same RAM and may be substitute by a single RAM function.
For all data inputs (RD for read access and WR and IN for
write access), GATEs may be inserted between the input and
the RAM function. Their E inputs may be connected to the
respective START inputs of the original pseudo-functions. If
a RAM is read and written at only one program point, the U
output of the read and write access may be moved to the ERD
or EWR output, respectively. For example, the single access
ali]=x; from FIG. 68 may be transformed to the final CDFG
shown in FIG. 69.

However, if several read or several write accesses, (i.e.,
pseudo-functions from different program points) to the same
RAM occur, the ERD or EWR events are not specific any-
more. But a STARTnew event of the original pseudo function
should only be generated for the respective program point,
i.e., for the current access. This may be achieved by connect-
ing the START signals of all other accesses (pseudo-func-
tions) of the same type (read or write) with the inverted
START signal of the current access. The resulting signal may
produce an event for every access, but a 1-event for only the
current access. This event may be ECOMB-combined with
the RAM’s ERD or EWR output. The ECOMB’s output will
only occur after the access is completed. Because ECOMB
OR-combines its event packets, only the current access pro-
duces a 1-event. Next, this event may be filtered with a 1-FIL-
TER and changed by a 0-CONSTANT, resulting in a
START,,,, signal which produces a 0-event only after the
current access is completed as required.

For several accesses, several sources may be connected to
the RD, WR, and IN inputs of a RAM. This may disable the
self-synchronization. However, since only one access occurs
at a time, the GATEs only allow one data packet to arrive at
the inputs.

For read accesses, the packets at the OUT output face the
same problem as the ERD event packets, which is that they
occur for every read access, but must be used (and forwarded
to subsequent operators) only for the current access. This can
be achieved by connecting the OUT output via a DEMUX
function. The Y output of the DEMUX may be used, and the
X output may be left unconnected. Then it may act as a
selective gate which only forwards packets if its SEL input
receives a 1-event, and discards its data input if SEL receives
a0-event. The signal created by the ECOMB described above
for the START, ,,, signal may create a 1-event for the current
access, and a 0O-event otherwise. Using it as the SEL input
achieves exactly the desired functionality.

FIG. 70 shows the resulting CDFG for the first example
above (two read accesses), after applying the transformations
of Phase 2 to FIG. 67. STOP1 may be generated as follows.
START(old) may be inverted, “2 to 1 connected” to STOP 1
(because it is the START input of the second read pseudo-
function), ECOMB-combined with RAM’s ERD output and
sent through the 1-FILTER/O-CONSTANT combination.
START(new) may be generated similarly, but here START
(old) may be directly used and STOP 1 inverted. The GATEs
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for input IN (i and j) may be connected to START(0ld) and
STOP1, respectively, and the DEMUX functions for outputs
x and y may be connected to the ECOMB outputs related to
STOP1 and START (new).

Multiple write accesses may use the same control events,
but instead of one GATE per access for the RD inputs, one
GATE for WR and one gate for IN (with the same E input)
may be used. The EWR output may be processed like the
ERD output for read accesses.

This transformation may ensure that all RAM accesses are
executed correctly, but it is not very fast since read or write
accesses to the same RAM are not pipelined. The next access
only starts after the previous one is completed, even if the
RAM being used has several pipeline stages. This ineffi-
ciency can be removed as follows.

First, continuous sequences of either read accesses or write
accesses (not mixed) within a basic block may be detected by
checking for pseudo-functions whose U output is directly
connected to the START input of another pseudo-function of
the same RAM and the same type (read or write). For these
sequences, it is possible to stream data into the RAM rather
than waiting for the previous access to complete. For this
purpose, a combination of MERGE functions may select the
RD or WR and IN inputs in the order given by the sequence.
The MERGES must be controlled by iterative ESEQs guar-
anteeing that the inputs are only forwarded in the desired
order. Then only the first access in the sequence needs to be
controlled by a GATE or GATEs. Similarly, the OUT outputs
of a read access can be distributed more efficiently for a
sequence. A combination of DEMUX functions with the
same ESEQ control can be used. It may be most efficient to
arrange the MERGE and DEMUX functions as balanced
binary trees.

The START,,,, signal may be generated as follows. For a
sequence of length n, the START signal of the entire sequence
may be replicated n times by an ESEQ[00.. . . 1] function with
the START input connected to the sequence’s START. Its
output may be directly “N to 1 connected” with the other
accesses” START signal (for single accesses) or ESEQ out-
puts sent through 0-CONSTANT (for access sequences),
ECOMB-connected to EWR or ERD, respectively, and sent
through a 1-FILTER/0-CONSTANT combination, similar to
the basic method described above. Since only the last ESEQ
output is a 1-event, only the last RAM access generates a
START,,,, as required. Alternatively, for read accesses, the
generation of the last output can be sent through a GATE
(without the E input connected), thereby producing a
START,,,, event.

FIG. 71 shows the optimized version of the first example
(FIGS. 67 and 70) using the ESEQ-method for generating
START,,,, and FIG. 72 shows the final CDFG of the follow-
ing, larger example with three array reads. In this embodi-
ment, the latter method for producing the START,,.,, event is
used.

x=afi];
Y=afj];

z=afk];

If several read sequences or read sequences and single read
accesses occur for the same RAM, 1-events for detecting the
current accesses must be generated for sequences of read
accesses. They are needed to separate the OUT-values relat-
ing to separate sequences. The ESEQ output just defined, sent
through a 1-CONSTANT, may achieve this. It may be again
“Nto 1 connected” to the other accesses’ START signals (for
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single accesses) or ESEQ outputs sent through 0-CON-
STANT (for access sequences). The resulting event may be
used to control a first-stage DEMUX which is inserted to
select the relevant OUT output data packets of the sequence as
described above for the basic method. A complete example is
provided below under the heading “More Examples” with
reference to FIGS. 75 and 76.
Input and Output Ports

Input and output ports may be processed similar to vector
accesses. A read from an input port is like an array read
without an address. The input data packet may be sent to
DEMUX functions which may send it to the correct subse-
quent operators. The STOP signal may be generated in the
same way as described above for RAM accesses by combin-
ing the INPORT’s U output with the current and other START
signals.

Output ports may control the data packets by GATEs like
array write accesses. The STOP signal may also be created as
for RAM accesses.

More Examples

FIG. 73 shows the generated CDFG for the following for
loop.

a=b+c;

for (i=0; i<=10; i++){
a=ati;
x[i]=k;

In this example, IN1={a} and IN2={k} (In this regard, see
FIG. 25). The MERGE function for variable a may be
replaced by a 2:1 data connection as mentioned above under
the heading “FOR Loops.” It is noted that only one data
packet arrives for variables b, ¢, and k, and one final packet is
produced for a (out). Forbody does not use a START event
since both operations (the adder and the RAM write) are
dataflow-controlled by the counter anyway. But the RAM’s
EWR output may be the forbody’s START,,,, and may be
connected to CNT’s NEXT input. It is noted that the pipelin-
ing optimization (see that which is discussed under the head-
ing “Vectorization and Pipelining”) was not applied here. If it
is applied (which is possible for this loop), CNT’s NEXT
input is not connected. See FIG. 67. Here, the loop iterations
overlap. START,,,, is generated from CNT’s U output and
forbody’s START,,,,, (i.e., RAM’s EWR output), as defined at
the end of the discussion under the heading “FOR Loops.”

The following program includes a vectorizable (pipelined)
loop with one write access to array (RAM) x and a sequence
of'two read accesses to array (RAM) y. After the loop, another
single read access to y occurs.

z=0;
for (i=0; i<=10; i++){
x[i]=1;
z =z + y[i] + y[2*i];
¥
a=y[k];

FIG. 75 shows the intermediate CDFG generated before
the array access Phase 2 transformation is applied. The pipe-
lined loop may be controlled as follows. Within the loop,
separate START signals for write accesses to x and read
accesses to y may be used. The reentry to the forbody may
also be controlled by two independent signals (“cyclel” and
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“cycle2”). For the read accesses, “cycle2” may guarantee that
the read y accesses occur in the correct order. But the begin-
ning of an iteration for read y and write x accesses is not
synchronized. Only at loop exit all accesses must be finished,
which may be guaranteed by signal “loop finished”. The
single read access may be completely independent of the
loop.

FIG. 76 shows the final CDFG after Phase 2. It is noted that
“cyclel” is removed since a single write access needs no
additional control, and “cycle2” is removed since the inserted
MERGE and DEMUX functions automatically guarantee the
correct execution order. The read y accesses are not indepen-
dent anymore since they all refer to the same RAM, and the
functions have been merged. ESEQs have been allocated to
control the MERGE and DEMUX functions of the read
sequence, and for the first-stage DEMUX functions which
separate the read OUT values for the read sequence and for
the final single read access. The ECOMBs, 1-FILTERs,
0-CONSTANTs and 1-CONSTANTs are allocated as
described with respect to Phase 2 under the heading “Array
Accesses” to generate correct control events for the GATEs
and DEMUX functions.

In an example embodiment of the present invention, data
may be supplied to the data processing logic cell field in
response to execution of a load configuration by the data
processing logic cell field, and/or data from this data process-
ing logic cell field may be written back (STORED) by pro-
cessing a STORE configuration accordingly. These load con-
figurations and/or memory configurations may be designed in
such a way that addresses of memory locations to be accessed
directly or indirectly by loading and/or storage are generated
directly or indirectly within the data processing logic cell
field. Through this configuration of address generators within
a configuration, a plurality of data may be loadable into the
data processing logic cell field, where it may be stored in
internal memories (iRAM), if necessary, and/or in internal
cells such as EALUs having registers and/or internal memory
arrangements. The load configuration and/or memory con-
figuration may thus allow loading of data by blocks, almost
like data streaming, in particular being comparatively rapid in
comparison with individual access, and such a load configu-
ration may be executable before one or more configurations
that process data by actually analyzing and/or modifying it,
with which configuration(s) the previously loaded data is
processed. Data loading and/or writing may typically take
place in small areas of large logic cell fields, while other
subareas may be involved in other tasks. Reference is made to
FIGS. 77A-77] for these and other particulars of the present
invention. In the ping-pong-like data processing described in
other published documents by the present applicant in which
memory cells are provided on both sides of the data process-
ing field, one memory side may be preloaded with new data
by a LOAD configuration in an array part, while data from the
opposite memory side having a STORE configuration may be
written back in another array part; in a first processing step.
Data from the memory on one side may stream through the
data processing field to the memory on the other side. Inter-
mediate results obtained in the first stream through the field
may be stored in the second memory, the field may be recon-
figured, if necessary, and the interim results may then stream
back for further processing, etc. This simultaneous LOAD/
STORE procedure is also possible without any spatial sepa-
ration of memory areas.

For example, FIG. 77A provides an overview of the basic
data operation model. Four listed configurations, config 1, 2,
3, n, are shown to be loaded via a Configuration Manager
(CT) into a reconfigurable array, which includes at least two
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banks of iRAMs, one at each side. The listed configurations
config 1, 2, 3, n are shown in detail in the FIGS. 77B-77].
Address generators (labeled as In/Out Addressgen or IOAGs)
transfer internal data to the array or iRAMs from, or from the
array or iRAMs to, external elements, such as external
memory.

FIG. 77B shows a configuration loading data from external
memory into one or more internal iRAM-Bank(s) via the
IOAG. The IOAG is shown to generate addresses (A) for the
external memory, which, in turn, in shown to return the
according data (D) to the IOAG. The IOAG forwards the data,
e.g., through the reconfigurable array, to the iIRAM-Bank(s).
The configuration executed on the reconfigurable array may
comprise further address generation, which may be fed to the
IOAG, and/or provide addressing for one or multiple iRAM-
Bank(s). Also, according control for loading the data is shown
to be provided.

FIG. 77C shows an alternative implementation, where a
Cache Controller is used, e.g., in place of the IOAG. The
Load/Store configuration, according to FIG. 77B provides
addresses to the Cache controller. A cache hierarchy, shown
to include Level I-n caches, connects the reconfigurable array
with the external memory.

FIG. 77D shows the same, but with a separated IOAG
between the reconfigurable array and the Cache.

FIG. 77E shows a first data processing step, in which data
to be processed is read from a source iRAM (iRAM-Bank1),
which may be loaded as described above. The data is pro-
cessed by execution within the configurable array, while addi-
tional input data may be received through the IOAG from an
external source. Result data is written to a target iRAM
(1IRAM-Bank?2) and/or may be sent out through the IOAG.
The configurations of FIGS. 77E and 77F are described as
analogous to the game of “ping pong.” The configuration of
FIG. 77E is therefore referenced as “ping” as data is trans-
ferred in a first direction from left to right.

The subsequent configuration shown in FIG. 77F is called
“pong” as the next processing step reads from iRAM-Bank2
the result data previously produced in the “ping” step, using
the result data as input data. The input data is processed, again
possibly together with additional data from the IOAG, and the
results are written into iRAM-Bank]1, while (again) some data
might be sent out to external devices via the IOAG.

As shown in FIG. 77G, operand data might be read from
one iRAM-Bank and be written back into the same iRAM-
Bank.

As shown in FIG. 77H, for example, two configurations
Configl and Config2 can operate in parallel and access one or
multiple iRAM-Banks, e.g., in parallel.

FIG. 77] shows the function of a Store configuration, read-
ing data from an iRAMBank and writing the data to the
external memory. The according configuration is shown in
FIG. 771, essentially including the same elements and func-
tions as FIG. 77B in the reverse direction, i.e., such that data
is read from the iRAM-Bank(s) and sent via the IOAG to the
external memory. Further address calculation might be pro-
vided by the reconfigurable array for the iRAM-Bank(s) and/
or the IOAG for addressing the external memory. Store con-
trol might control the data transfer from the iRAM-Bank(s) to
or through the IOAG.

It should be pointed out again that there are various possi-
bilities for filling internal memories with data. The internal
memories may be preloaded in advance in particular by sepa-
rate load configurations using data streaming-like access.
This would correspond to use as vector registers, and may
result in the internal memories always being at least partially
a part of the externally visible state of the XPP and therefore

10

15

20

25

30

35

40

45

50

55

60

65

158

having to be saved, i.e., written back when there is a context
switch. Alternatively and/or additionally, the internal memo-
ries (iIRAMs) may be loaded onto the CPU through separate
“load instructions.” This may result in reduced load processes
through configurations and may result in a broader interface
to the memory hierarchy. Here again, access is like access to
vector registers.

Preloading may also include a burst from the memory
through instruction of the cache controller. Moreover it is
possible (and may be preferred as particularly efficient in
many cases) to design the cache in such a way that a certain
preload instruction maps a certain memory area, which may
be defined by the starting address and size and/or
increment(s), onto the internal memory (iIRAM). If all inter-
nal RAMS have been allocated, the next configuration may be
activated. Activation may entail waiting until all burst-like
load operations are concluded. However, this may be trans-
parent if preload instructions are output long enough in
advance and cache localization is not destroyed by interrupts
or a task switch. A “preload clean” instruction may then be
used in particular, preventing data from being loaded out of
memory.

A synchronization instruction may be required to ensure
that the content of a specific memory area stored cache-like in
iRAM may be written back to the memory hierarchy, which
may be accomplished globally or by specifying the accessed
memory area. Global access corresponds to a “full write-
back” To simplify preloading of the iRAM, it is possible to
specify this by giving a basic address, optionally one or more
increments (in the event of access to multidimensional data
fields), and a total run length, to store these in registers or the
like, and then to access these registers for determining how
loading is to be performed.

In one example embodiment of the present invention, reg-
isters may be designed as FIFOs. One FIFO may then also be
provided for each of a plurality of virtual processors in a
multithreading environment. Moreover, memory locations
may be provided for use as TAG memories, as is customary
with caches.

Marking the content of iIRAMS as “dirty” in the cache
sense may be helpful, so that the contents may be written back
to an external memory as quickly as possible if the contents
are not to be used again in the same iRAM. Thus, the XPP
field and the cache controller may be considered as a single
unit because they do not need different instruction streams.
Instead, the cache controller may be regarded as the imple-
mentation of the steps “configuration fetch,” “operand fetch”
(iIRAM preload) and “write-back,”i.e., CF, OF and WB, in the
XPP pipeline, the execution stage (ex) also being triggered. In
one embodiment, due to the long latencies and unpredictabil-
ity, e.g., due to faulty access to the cache or configurations of
different lengths, steps may be overlapped for the width of
multiple configurations, the configuration and data preload-
ing FIFO (pipeline) being used for the purpose of loose cou-
pling. The FILMO, which is known per se, may be situated
downstream from the preload. Further, preloading may be
speculative, the measure of speculation being determined as a
function of the compiler. However, there is no disadvantage in
incorrect preloading inasmuch as configurations which have
only been preloaded but have not been executed are readily
releasable for overwriting, just as is the assigned data. Pre-
loading of FIFO may take place several configurations in
advance and may depend, for example, on the properties of
the algorithm. It is also possible to use hardware for this
purpose.

With regard to writing back data used from iRAM to exter-
nal memories, this may be accomplished by a suitable cache
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controller allocated to the XPP, but, in this case, it may typi-
cally prioritize its tasks and may preferentially execute pre-
load operations having a high priority because of the assigned
execution status. However, preloading may also be blocked
by a higher-level iRAM instance in another block or by a lack
of empty iRAM instances in the target iRAM block. In the
latter case, the configuration may wait until a configuration
and/or a write-back is concluded. The iRAM instance in a
different block may then be in use or may be “dirty.” It is
possible to provide for the clean iRAMs used last to be dis-
carded, i.e., to be regarded as “empty.” If there are neither
empty nor clean iRAM instances, then it may be required for
a “dirty” iRAM part and/or a nonempty iRAM part to be
written back to the memory hierarchy. Only one instance may
be in use at one time, and there should be more than one
instance in an iRAM block to achieve a cache effect, so it is
impossible that there are neither empty nor clean nor dirty
iRAM instances.

FIGS. 80A to 80C include examples of architectures in
which an SMT processor is coupled to an XPP thread
resource.

It may be necessary to limit the memory traffic, which may
be possible in various ways during a context switch. For
example, strict read data need not be stored, as is the case with
configurations, for example. In the case of uninterruptible
(non-preemptive) configurations, the local states of buses and
PAEs need not be stored.

It is possible to provide for only modified data to be stored,
and cache strategies may be used to reduce memory traffic. To
do so, a Least Recently Used (LRU) strategy may be imple-
mented in particular in addition to a preload mechanism, in
particular when there are frequent context switches.

In an example embodiment of the present invention, if
iRAMs are defined as local cache copies of the main memory
and a starting address and modification state information are
assigned to each iIRAM, the iRAM cells may be replicated, as
is also the case for SMT support, so that only the starting
addresses of the iRAMs need be stored and loaded again as
context. The starting addresses for the iRAMs of an instanta-
neous configuration may then select the iRAM instances hav-
ing identical addresses foruse. If no address TAG ofan iRAM
instance corresponds to the address of the newly loaded con-
text or the context to be newly loaded, the corresponding
memory area may be loaded into an empty iRAM instance,
this being understood here as a free iRAM area. If no such
area is available, it is possible to use the methods described
above.

Moreover, delays caused by write-backs may be avoidable
by using a separate state machine (cache controller), with
which an attempt may be made in particular to write back
iRAM instances which are inactive at the moment during
unneeded memory cycles.

As is apparent from the preceding discussion, the cache
may be preferably interpreted as an explicit cache and not as
a cache which is transparent to the programmer and/or com-
piler as is usually the case. To provide the proper triggering
here, configuration preload instructions, which precede
iRAM preload instructions used by that configuration, may be
output, e.g., by the compiler. Such configuration preload
instructions should be provided by the scheduler as soon as
possible. Furthermore, i.e., alternatively and/or additionally,
iRAM preload instructions which should likewise be pro-
vided by the scheduler at an early point in time may also be
provided, and configuration execution instructions that fol-
low iRAM preload instructions for this configuration may
also be provided, these configuration execution instructions
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optionally being delayed, in particular by estimated latency
times, in comparison with the preload instructions.

It is also possible to provide for a configuration wait
instruction to be executed, followed by an instruction which
orders a cache write-back, both being output by the compiler,
in particular when an instruction of another functional unit
such as the load/memory unit is able to access a memory area
which is potentially dirty or in use in an iRAM. Synchroni-
zation of the instruction flows and cache contents may thus be
forced while avoiding data hazards. Through appropriate
handling, such synchronization instructions are not necessar-
ily common.

Data loading and/or storing need not necessarily take place
in a procedure which is entirely based on logic cell fields.
Instead, it is also possible to provide one or more separate
and/or dedicated DMA units, i.e., DMA controllers in par-
ticular, which are configured, i.e., functionally prepared, i.e.,
set up, e.g., by specifications with regard to starting address,
increment, block size, target addresses, etc., in particular by
the CT and/or from the logic cell field.

Loading may also be performed from and into a cache in
particular. This may have the advantage that external com-
munication with larger memory banks is handled via the
cache controller without having to provide separate switching
arrangements within the data processing logic cell field; read
or write access in the case of cache memory arrangements is
typically very fast and has a low latency time; and typically a
CPU unit is also connected to this cache, typically via a
separate LOAD/STORE unit, so that access to data and
exchange thereof by blocks may take place quickly between
the CPU core and data processing logic cell field, so that a
separate command need not be fetched from the opcode
fetcher of the CPU and processed for each transfer of data.

This cache coupling has also proven to be much more
favorable than coupling of a data processing logic cell field to
the ALU via registers if these registers communicate with a
cache only viaa LOAD/STORE unit, as is known per se from
the non-PACT publications cited above.

Another data link to the load/memory unit of a sequential
CPU unit assigned to the data processing logic cell field
and/or to its registers may be provided.

Such units may respond via separate input/output terminals
(IO ports) of the data processing logic cell array designable in
particular as a VPU and/or XPP and/or through one or more
multiplexers downstream from a single port.

In addition to blockwise and/or streaming and/or random
reading and/or writing access, in particular in read-modify-
write mode (RMW) mode to cache areas and/or the LOAD/
STORE unit and/or the connection (known per se in the
related art) to the register of the sequential CPU, there may
also be a connection to an external bulk memory such as a
RAM, a hard drive and/or another data exchange port such as
an antenna, etc. A separate port may be provided for this
access to cache arrangements and/or LOAD/STORE units
and/or memory arrangements different from register units.
Suitable drivers, buffers, signal processors for level adjusting
and so forth may be provided, e.g., L.874244, 1.574245. The
logic cells of the field may include ALUs and/or EALUs, in
particular but not exclusively for processing a data stream
flowing in or into the data processing logic cell field, and
typically short fine-granularly configurable FPGA type cir-
cuits may be provided upstream from them at the inlet and/or
outlet ends, in particular at both the inlet and outlet ends,
and/or may be integrated into the PAE-ALU to cut bit blocks
out of a continuous data stream, for example, as is necessary
for MPEG4 decoding. This may be advantageous when a data
stream is to enter the cell and is to be subjected there to a type
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of preprocessing without blocking larger PAEs units of this
type. This may also be of particular advantage when the AL U
is designed as a SIMD arithmetic unit, in which case a very
long data input word having a data length of 32 bits, for
example, may then be split up via the upstream FPGA-type
strips into a plurality of parallel data words having a length of
4 bits, for example, which may then be processed in parallel
in the SIMD arithmetic units, which is capable of signifi-
cantly increasing the overall performance of the system, if
corresponding applications are needed. FPGA-type upstream
and/or downstream structures were discussed above. How-
ever, FPGA-type does not necessarily refer to 1-bit granular
arrangements. Itis possible in particular to provide, instead of
these hyperfine granular structures, only fine granular struc-
tures having a width of 4 bits, for example. In other words,
FPGA-type input and/or output structures upstream and/or
downstream from an ALU unit designed as a SIMD arith-
metic unit in particular may be configurable, for example, so
that 4-bit data words are always supplied and/or processed. It
may be possible to provide cascading here so that, for
example, the incoming 32-bit-long data words stream into
four separate and/or separating 8-bit FPGA-type structures
positioned side by side, a second strip having eight 4-bit-wide
FPGA-type structures is downstream from these four 8-bit-
wide FPGA-type structures and then, if necessary, after
another such strip, if necessary for the particular purpose,
sixteen parallel 2-bit wide FPGA-type structures are also
provided side by side, for example. If this is the case, a
substantial reduction in configuration complexity may be
achieved in comparison with strictly hyperfine granular
FPGA-type structures. This may also result in the configura-
tion memory of the FPGA-type structure possibly turning out
to be much smaller, thus permitting a savings in terms of chip
area. FPGA-type strip structures, as also shown in conjunc-
tion with FIGS. 79A-79D, in particular situated in the PAE,
may permit implementation of pseudo-random noise genera-
tors in a particularly simple manner. In an example embodi-
ment of the present invention, if individual output bits
obtained stepwise always from a single FPGA cell are written
back to the FPGA cell, a pseudo-random noise may also be
generated creatively using a single cell (see FIG. 81).

In principle, the coupling advantages in the case of data
block streams described above may be achievable via the
cache. In one example embodiment of the present invention,
the cache may be designed in slices and then multiple slices
may be simultaneously accessible, in particular all slices
being simultaneously accessible. This may be advantageous
when a plurality of threads is to be processed on the data
processing logic cell field (XPP) and/or the sequential
CPU(s), as explained below, whether via hyperthreading,
multitasking and/or multithreading. Cache memory arrange-
ments having slice access and/or slice access enabling control
arrangements may therefore be provided. For example, a
separate slice may be assigned to each thread. This may make
it possible later in processing the threads to ensure that the
proper cache areas are accessed when the command group to
be processed using the thread is resumed.

The cache need not necessarily be divided into slices, and
if this is the case, a separate thread need not necessarily be
assigned to each slice. Further, there may be cases in which
not all cache areas are being used simultaneously or tempo-
rarily at a given point in time. Instead, it is to be expected that
in typical data processing applications such as those occur-
ring with handheld mobile telephone (cell phones), laptops,
cameras and so forth, there are frequently times during which
the entire cache is not needed. Therefore, in an example
embodiment of the present invention, individual cache areas
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may be separable from the power supply so that their power
consumption drops significantly, in particular to zero or
almost zero. In a slice-wise cache design, this may occur by
shutting down the cache in slices via suitable power discon-
nection arrangements. The disconnection may be accom-
plished either by cycling down, clock disconnection, or
power disconnection. For example, FIG. 78 shows cache
slices and separately controllable connections to power and
clock signals via multiplexers and switches, respectively. In
particular, access recognition may be assigned to an indi-
vidual cache slice or the like, this access recognition being
designed to recognize whether a particular cache area, i.e., a
particular cache slice, has a thread, hyperthread, or task
assigned to it at the moment, by which it is being used. If the
access recognition then ascertains that this is not the case,
typically disconnection from the clock and/or even from the
power may then be possible. On reconnecting the power after
adisconnection, immediate response of the cache area may be
possible again, i.e., no significant delay need be expected due
to turning the power supply on and off if implemented in
hardware using conventional suitable semiconductor tech-
nologies. This is appropriate in many applications indepen-
dently of the use with logic cell fields.

In an example embodiment of the present invention,
although there may be a particularly efficient coupling with
respect to the transfer of data and/or operands in blockwise
form in particular, nevertheless no balancing is necessary in
such a way that exactly the same processing time is necessary
in a sequential CPU and XPP and/or data processing logic cell
field. Instead, the processing may be performed in a manner
which is practically often independent, in particular in such a
way that the sequential CPU and the data processing logic cell
field system may be considered as separate resources for a
scheduler or the like. This may allow immediate implemen-
tation of known data processing program splitting technolo-
gies, such as multitasking, multithreading, and hyperthread-
ing. A resulting advantage that path balancing is not
necessary, i.e., balancing between sequential parts (e.g., on a
RISC unit) and data flow parts (e.g., on an XPP), may result in
any number of pipeline stages optionally being run through,
e.g., within the sequential CPU (i.e., the RISC functional
units), for example, cycling in a different way is possible and
so forth. Further, according to embodiments of the present
invention, by configuring a load configuration and/or a store
configuration into the XPP or other data processing logic cell
fields, the data may be loaded into the field or written out of'it
at a rate which is no longer determined by the clock speed of
the CPU, the speed at which the opcode fetcher works or the
like. In other words, the sequence control of the sequential
CPU is no longer a bottleneck restriction for the data through-
put through the data processing logic cell field without there
being even a loose coupling.

According to an example embodiment of the present inven-
tion, it may be possible to use known CTs (or configuration
managers (CMs) or configuration tables) for an XPP unit to
use the configuration of one or more XPP fields also designed
hierarchically with multiple CTs and at the same time one or
more sequential CPUs more or less as multithreading sched-
uler and hardware management, which has the inherent
advantage that known technologies (FILMO, etc.) may be
used for the hardware-supported management in multithread-
ing, but alternatively and/or additionally, in particular in a
hierarchical arrangement, it is possible for a data processing
logic cell field like an XPP to receive configurations from the
opcode fetcher of a sequential CPU via the coprocessor inter-
face. This may result in a call being instantiable by the
sequential CPU and/or another XPP, resulting in data process-
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ing on the XPP. The XPP may then be kept in the data
exchange, e.g., via the cache coupling described here and/or
via LOAD and/or STORE configurations which provide
address generators for loading and/or write-back of data in
the XPP and/or data processing logic cell field. In other
words, coupling of a data processing logic cell field in the
manner of a coprocessor and/or thread resources is possible
while at the same time data loading in the manner of data
streaming is taking place through cache coupling and/or /O
port coupling.

The coprocessor coupling, i.e., the coupling of the data
processing logic cell field, may typically result in scheduling
for this logic cell field as well as also taking place on the
sequential CPU or on a higher level scheduler unit and/or
corresponding scheduler arrangements. In such a case,
threading control and management may take place in practi-
cal terms on the scheduler and/or the sequential CPU.
Although this is possible per se, this will not necessarily be
the case at least in all embodiments of the present invention.
Instead, the data processing logic cell field may be used by
calling in the traditional way as is done with a standard
coprocessor, e.g., in the case of 8086/8087 combinations.

In addition, in an example embodiment of the present
invention, regardless of the type of configuration, whether via
the coprocessor interface, the configuration manager of the
XPP and/or of the data processing logic cell field or the like,
where the CT also functions as a scheduler, or in some other
way, it is possible, in and/or directly on the data processing
logic cell field and/or under management of the data process-
ing logic cell field, to address memories, in particular internal
memories, in particular, in the case of the XPP architecture,
such as that known from the various previous patent applica-
tions and publications by the present applicant, RAM PAEs or
other similarly managed or internal memories, as a vector
register, i.e., to store the data quantities loaded via the LOAD
configuration like vectors as in vector registers in the internal
memories and then, after reconfiguring the XPP and/or the
data processing logic field, i.e., overwriting and/or reloading
and/or activating a new configuration which performs the
actual processing (in this context, for such a processing con-
figuration, reference may also be made to a plurality of con-
figurations which are to be processed in wave mode and/or
sequentially), to access them as in the case of a vector register
and then store the results thus obtained and/or intermediate
results in turn in the internal memories or external memories
managed via the XPP like internal memories to store these
results there. The memory written in this way in the manner of
a vector register with processing results using XPP access
may then be written back in a suitable manner by loading the
STORE configuration after reconfiguring the processing con-
figuration. This, in turn, may take place in the manner of data
streaming, whether via the /O port directly into external
memory areas and/or into cache memory areas which may
then be accessed by the sequential CPU, other configurations
on the XPP, which previously generated the data, and/or
another corresponding data processing unit.

According to one example embodiment of the present
invention, at least for certain data processing results and/or
interim results, the memory and/or vector register arrange-
ment in which the resulting data is to be stored are not internal
memories into which data may be written via STORE con-
figuration in the cache area or some other area which the
sequential CPU or another data processing unit may access.
Instead, the results may be written directly into corresponding
cache areas, in particular, access-reserved cache areas, which
may be organized like slices in particular. This may have the
disadvantage of a greater latency, in particular when the paths
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between the XPP or data processing logic cell field unit and
the cache are so long that the signal propagation times
become significant, but it may result in no additional STORE
configuration being needed. Such storage of data in cache
areas may be possible, as described above, due to the fact that
the memory to which the data is written is located in physical
proximity to the cache controller and is designed as a cache.
Alternatively and/or additionally there is also the possibility
of placing part of an XPP memory area, XPP-internal
memory or the like, in particular in the case of RAM via PAEs
(see PACT31: DE 102 12 621.6, WO 03/036507, now U.S.
Pat. No. 8,429,385), under the management of one or more
sequential cache memory controllers. This may have advan-
tages when minimizing the latency when storing the process-
ing results, which are determined within the data processing
logic cell field, whereas the latency in the case of access by
other units to the memory area, which then functions only as
a “quasi-cache,” may play little or no role.

According to another embodiment of the present invention,
the cache controller of the traditional sequential CPU may
address a memory area as a cache, this memory area being
physically located on and/or at the data processing logic cell
field without being used for the data exchange with it. This
may have the advantage that, when applications having a low
local memory demand are running on the data processing
logic cell field, and/or when only a few additional configura-
tions are needed, based on the available storage volume, this
may be available as a cache to one or more sequential CPUs.
The cache controller may be designed for management of a
cache area having a dynamic extent, i.e., of varying size.
Dynamic cache size management and/or cache size manage-
ment arrangements for dynamic cache management may
typically take into account the work load and/or the input/
output load on the sequential CPU and/or the data processing
logic cell field. In other words, it is possible to analyze, for
example, how many NOP data accesses there are in a given
unit of time to the sequential CPU and/or how many configu-
rations in the XPP field should be stored in advance in
memory areas provided for this purpose to be able to permit
rapid reconfiguration, whether by way of wave reconfigura-
tion or in some other way. The dynamic cache size described
here may thus be a runtime dynamic, i.e., the cache controller
may manage a prevailing cache size, which may change from
one clock pulse to the other or from one clock pulse group to
the other. Moreover, the access management of anXPP and/or
data process logic cell field including access as an internal
memory as is the case with a vector register and as a cachetype
memory for external access, with regard to the memory
accesses, has already been described in DE 196 54 595 and
PCT/DE 97/03013, now U.S. Pat. No. 6,338,106, (PACTO03).
The publications cited are herewith incorporated fully by
reference thereto for disclosure purposes.

Reference was made above to data processing logic cell
fields which are runtime reconfigurable in particular. The fact
that a configuration management unit (CT and/or CM) may
be provided for these systems was discussed. Management of
configurations per se is known from the various patents and
applications by the present applicant, to which reference has
been made for disclosure purposes, as well as the applicant’s
other publications. Such units and their mechanism of opera-
tion via which configurations not yet currently needed are
preloadable, in particular independently of connections to
sequential CPUs, etc., may also be highly usable for inducing
a task switch, a thread switch, and/or a hyperthread switch in
multitasking operation, inhyperthreading, and/or in multi-
threading (see FIGS. 82A and 82B, for example). That, dur-
ing the runtime of a thread or task, configurations for different
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tasks, i.e., threads and/or hyperthreads, may also be loaded
into the configuration memory in the case of a single cell or a
group of cells of the data processing logic cell field, i.e., a PAE
of'a PAE field (PA), for example, may be used to do so. That
is, in the case of a blockade of a task or thread, e.g., when it is
necessary to wait for data because the data is not yet available,
whether because it has not yet been generated or received by
another unit, e.g., because of latencies, or because a resource
is currently still being blocked by another access, configura-
tions for another task or thread may be preloadable and/or
preloaded and it is possible to switch to them without the time
overhead of having to wait for a configuration switch in the
case of a shadow-loaded configuration in particular. In prin-
ciple, it is possible to use this technique even when the most
probable continuation is predicted within a task and a predic-
tion is not correct (prediction miss), but this type of operation
is preferred in prediction-free operation. In the case of use
with a purely sequential CPU and/or multiple purely sequen-
tial CPU s, in particular exclusively with such CPU s, multi-
threading management hardware may thus be implemented
by adding a configuration manager. Reference is made in this
regard in particular to PACTIO (DE 198 07 872.2, WO
99/44147, now U.S. Pat. No. 6,480,937, WO 99/44120, now
U.S. Pat. No. 6,571,381) and PACT17 (DE 100 28 397.7, WO
02/13000, now U.S. Pat. No. 7,003,660). It may be regarded
as sufficient, in particular if hyperthreading management is
desired for a CPU and/or a few sequential CPUs, to omit
certain partial circuits like the FILMO as described in the
patents and applications to which reference has been made
specifically. In particular, this also describes the use of the
configuration manager described there with and/or without
FILMO for hyperthreading management for one or more
purely sequentially operating CPU s with or without connec-
tion to an XPP or another data processing logic cell field. A
plurality of CPUs may be implemented using the known
techniques, as are known in particular from PACT31 (DE 102
12 621.6-53, PCT/EP 02/10572, now U.S. Pat. No. 8,429,
385)and PACT34 (DE 102 41 812.8, PCT/EP 03/09957, now
U.S. Pat. No. 7,394,284) in which one or more sequential
CPUs are provided within an array, utilizing one or more
memory areas in the data processing logic cell field in par-
ticular for construction of the sequential CPU, in particular as
an instruction register and/or data register. It should also be
pointed out here that previous patent applications such as
PACTO2 (DE 196 51 075.9-53, WO 98/26356, now U.S. Pat.
No. 6,728,871), PACT04 (DE 196 54 846.2-53, WO
98/29952 (no US)), and PACTO8 (DE 197 04 728.9, WO
98/35299 (no US)) have already disclosed how sequencers
having ring and/or random access memories may be con-
structed.

A task switch and/or a thread switch and/or a hyperthread
switch using the known CT technology-see PACTIO (DE 198
07 872.2, WO 99/44147, now U.S. Pat. No. 6,480,937, WO
99/44120, now U.S. Pat. No. 6,571,381) and PACTI7 (DE
10028 397.7, W002/13000, now U.S. Pat. No. 7,003,660)—
may take place. Performance slices and/or time slices may be
assigned by the CT to a software-implemented operating
system scheduler or the like which is known per se, during
which it may be determined which parts per se are to be
processed subsequently by which tasks or threads, assuming
that resources are free. An example may be given in this
regard as follows. First, an address sequence may be gener-
ated for a first task. According to this, data may be loaded
from a memory and/or cache memory to which a data pro-
cessing logic cell field is connected in the manner described
here, during the execution of a LOAD configuration. As soon
as this data is available, processing of a second data process-
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ing configuration, i.e., the actual data processing configura-
tion, may be initiated. This may also be preloaded because it
is certain that this configuration is to be executed as long as no
interrupts or the like require a complete task switch. In con-
ventional processors, there is the problem known as cache
miss, in which data is requested but is not available in the
cache for load access. If such a case occurs in a coupling
according to the present invention, it is possible to switch
preferably to another thread, hyperthread and/or task which
was intended for the next possible execution in particular by
the operating system scheduler implemented through soft-
ware in particular and/or another similarly acting unit, and
therefore was loaded, e.g., in advance, into one of the avail-
able configuration memories of the data processing logic cell
field, in particular in the background during the execution of
another configuration, e.g., the LOAD configuration which
has triggered the loading of the data for which the system is
now waiting. Separate configuration lines may lead from the
configuring unit to the particular cells directly and/or via
suitable bus systems, such as those known in the related art
per se, for advance configuration, undisturbed by the actual
wiring of the data processing logic cells of the data processing
logic cell field having a close granular design in particular.
This design may permit undisturbed advance configuration
without interfering with another configuration underway at
that moment. Reference is made to PACT10 (DE 198 07
872.2, WO 99/44147, now U.S. Pat. No. 6,480,937, WO
99/44120, now U.S. Pat. No. 6,571,381), PACT17 (DE 100
28 397.7, WO 02/13000, now U.S. Pat. No. 7,003,660),
PACT13 (DE 199 26 538.0, WO 00/77652, now U.S. Pat. No.
8,230,411), PACTO2 (DE 196 51 075.9, WO 98/26356, now
U.S. Pat. No. 6,728,871) and PACTO08 (DE 197 04 728.9, WO
98/35299 (no US)). If the configuration to which the system
has switched during and/or because of the task thread switch
and/or hyperthread switch has been processed and processing
has been completed in the event of preferably indivisible,
uninterruptible and thus quasi-atomic configurations—see
PACT19 (DE 102 02 044.2, WO 2003/060747, now U.S. Pat.
No. 8,281,108) and PACT11 (DE 101 39 170.6, WO
03/017095, now U.S. Pat. No. 7,996,827)—then in some
cases another configuration may be processed as predeter-
mined by the corresponding scheduler, in particular the
scheduler close to the operating system and/or the configura-
tion for which the particular LOAD configuration was
executed previously. Before execution of a processing con-
figuration for which a LOAD configuration has previously
been executed, it is possible to test, e.g., by query of the status
of'the load configuration or the data loading DMA controller,
to determine whether in the meantime the particular data has
streamed into the array, i.e., whether the latency time has
elapsed, as typically occurs, and whether the data is actually
available.

In other words, if latency times occur, e.g., because con-
figurations have not yet been configured into the system, data
has not yet been loaded, and/or data has not yet been written
back, they will be bridged and/or masked by the execution of
threads, hyperthreads, and/or tasks which have already been
preconfigured and are operating using data which is already
available and/or which may be written back to resources
which are already available for write-back. Latency times
may be largely covered in this way and virtually 100% utili-
zation of the data processing logic cell field may be achieved,
assuming an adequate number of threads, hyperthreads, and/
or tasks to be executed per se.

By providing an adequate number of XPP-internal
memory resources which are freely assigned to threads, e.g.,
by the scheduler or the CT, the cache and/or write operations
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of several simultaneous and/or superimposed threads may be
executed, which may have a particularly positive effect on
bridging any latencies.

Using the system described here with regard to data stream
capability in the case of simultaneous coupling to a sequential
CPU and/or with regard to coupling an XPP array and/or data
processing logic cell field and simultaneously a sequential
CPU to a suitable scheduler unit such as a configuration
manager or the like, real time-capable systems may be readily
implementable. For real time capability, it may be necessary
to ensure a response to incoming data and/or interrupts sig-
naling the arrival of data in particular within a maximum
period of time, which is not to be exceeded in any case. This
may be accomplished, for example, by a task switch to an
interrupt and/or, e.g., in the case of prioritized interrupts, by
ascertaining that a given interrupt is to be ignored at the
moment, in which case it might be required for this to be
defined within a certain period of time. A task switch in such
real time-capable systems may be achievable in three ways,
namely when a task has been running for a certain period of
time (timer principle), when a resource is not available,
whether due to being blocked by some other access or due to
latencies in access thereto, e.g., reading and/or writing access,
i.e., in the case of latencies in data access, and/or in the event
of occurrence of interrupts.

A runtime-limited configuration in particular may also
trigger a watchdog and/or parallel counter on a resource
which is to be enabled and/or switched for processing the
interrupt. Although it has otherwise been stated explicitly see
also PACT29 (DE 102 12 622.4, WO 03/081454, published as
US Pub. Number 2006-0075211)—that new triggering of the
parallel counter and/or watchdog to increase runtime is sup-
pressible by a task switch, according to the present invention,
an interrupt may also have a blocking effect, i.e., according to
a task switch, parallel counter- and/or watchdog-and new
trigger, i.e., in such a case it is possible to prevent the con-
figuration itself from increasing its maximum possible runt-
ime by new triggering.

The real time capability of a data processing logic cell field
may now be achieved, e.g., by implementing one or more of
three exemplary embodiments.

According to a first embodiment, within a resource addres-
sable by the scheduler and/or the CT, there may be a switch to
processing an interrupt, for example. If the response times to
interrupts or other requests are so long that a configuration
may still be processed without interruption during this period
of time, then this is noncritical in particular, since a configu-
ration for interrupt processing may be preloaded onto the
resource which is to be switched to processing the interrupt,
and this may be done during processing of the currently
running configuration. The choice of the interrupt processing
configuration to be preloaded is to be made by the CT, for
example. It is possible to limit the runtime of the configura-
tion on the resource which is to be enabled and/or switched
for the interrupt processing. Reference is made in this regard
to PACT29/PCT (PCT/DE03/000942, published as US Pub
Number 2006-0075211).

In systems which must respond to interrupts more quickly,
in one embodiment of the present invention, a single resource,
i.e., for example, a separate XPP unit and/or parts of an XPP
field, may be reserved for such processing. If an interrupt
which must be processed quickly then occurs, it is possible to
either process a configuration preloaded for particularly criti-
cal interrupts in advance or to begin immediately loading an
interrupt processing configuration into the reserved resource.
A choice of the particular configuration required for the cor-
responding interrupt is possible through appropriate trigger-
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ing, wave processing, etc. Thus, with reference to FIG. 83, at
step 700, processing may be begin according to a configura-
tion, in response to which a counter may be enabled to begin
counting at step 701. During the processing, the configuration
may, at step 705 determine whether to retrigger the counter to
increase its maximum allowed time. If it is determined that
the configuration should end and the CT should perform a
reconfiguration, the counter may continue without being reset
until maximum runtime of the current configuration is
reached at step 703. Responsive to reaching the maximum
runtime, the CT may load a new configuration at step 704. If
it is determined at step 705 that the configuration should be
continued, the configuration may retrigger the counter at step
706. If an interrupt is detected at step 707, the trigger of the
configuration may be suppressed, so that maximum runtime
is reached at step 703. If an interrupt is not detected, the
configuration’s trigger may reset the counter at step 701, and
the process may be repeated.

Using the methods already described, it may be possible to
obtain an instant response to an interrupt by achieving code
re-entrance by using LOAD/STORE configurations. After
each data processing configuration or at given points in time,
e.g., every five or ten configurations, a STORE configuration
may be executed and then a LOAD configuration may be
executed while accessing the memory areas to which data was
previously written. When it is certain that the memory areas
used by the STORE configuration will remain unaffected
until another configuration has stored all relevant information
(states, data) by progressing in the task, it may then be certain
that the same conditions will be obtained again on reloading,
i.e., on re-entrance into a configuration previously initiated
but not completed. Such an insertion of LOAD/STORE con-
figurations with simultaneous protection of STORE memory
areas which are not yet outdated may be very easily generated
automatically without additional programming complexity,
e.g., by a compiler. Resource reservation may be advanta-
geous there. It should also be pointed out that in resource
reservation and/or in other cases, it is possible to respond to at
least a quantity of highly prioritized interrupts by preloading
certain configurations.

According to another embodiment of the response to inter-
rupts, when at least one of the addressable resources is a
sequential CPU, an interrupt routine in which a code for the
data processing logic cell field is prohibited may be processed
on it. In other words, a time-critical interrupt routine may be
processed exclusively on a sequential CPU without calling
XPP data processing steps. This may ensure that the process-
ing operation on the data processing logic cell field is not to be
interrupted and then further processing may take place on this
data processing logic cell field after a task switch. Although
the actual interrupt routine might not have an XPP code, it is
nevertheless possible to ensure that at a later point in time,
which is no longer relevant to real time, following an interrupt
it is possible to respond with the XPP to a state and/or data
detected by an interrupt and/or a real time request using the
data processing logic cell field.

The invention claimed is:
1. A data processing system, comprising:
a memory;
a single integrated circuit, having
a data processor core;
an integrated array data processor;
the integrated array data processor having
i) an array of arithmetic execution units arranged to
execute one or more algorithms in parallel; and
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i) an algorithm loader connected to the array of
arithmetic execution units, wherein an algorithm
comprises a set of instructions for joint execu-
tion; and

ajoint cache shared between the data processor core and
the array data processor;

the joint cache connected to the memory;

the single integrated circuit further including:

an algorithm list buffer connected to both the data pro-
cessor core and the algorithm loader.

2. The data processing system according to claim 1,
wherein the joint cache comprises a hierarchy of caches, and
wherein at least one adaptable cache within the cache hierar-
chy is adaptable in size.

3. The data processing system according to claim 2,
wherein the adaptable cache has a plurality of separately
powered sections and wherein the size of the adaptable cache
is controlled by disconnecting at least one separately powered
section of the adaptable cache from its power supply.

4. The data processing system according to claim 2,
wherein the adaptable cache has a plurality of separately
clocked sections and wherein the size adaptable cache is
controlled by disconnecting at least one separately clocked
section of the adaptable cache from its clock supply.

5. The data processing system according to claim 2,
wherein the adaptable cache has a plurality of separately
powered sections and the size the adaptable cache is con-
trolled by powering down at least one separately powered
section of the adaptable cache.

6. The data processing system according to claim 2,
wherein the adaptable cache has a plurality of separately
powered sections and wherein the size the adaptable cache is
controlled by changing the power supply of the separately
powered section of the adaptable cache.

7. The data processing system according to claim 2,
wherein at least one of said a hierarchy of caches is segmented
in sections.

8. The multi-core processor according to claim 1, wherein
at least one of the data processor core or the integrated array
data processor has a dedicated 1st level data cache.

9. The data processing system according to claim 8,
wherein the at least one of the data processor core or the
integrated array data processor that has a dedicated 1st level
data cache shares a higher cache level with at least one other
of'the at least one of the data processor core or the integrated
array data processor.

10. The data processing system according to claim 9,
wherein the one of the plurality of processing unit one of the
data processor core or the integrated array data processor that
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has a dedicated 1st level data cache shares at least the 2nd
level cache with at least one other of the plurality of process-
ing units.

11. The data processing system according to claim 1,
wherein one of the data processor core or the integrated array
data processor comprises a floating point unit.

12. An integrated circuit data processor device comprising:

a data processor core having a plurality of data load units;

at least one array data processor having an array of parallel

processing arithmetic execution units; and

a multi-level cache for caching instructions and data, at

least one level of the multi-level cache comprising a
plurality of cache slices, the multi-level cache being
shared by the data processor core and the array data
processor;

an instruction dispatch unit separate from the data proces-

sor core connected to the array data processor, the
instruction dispatch unit configured to dispatch software
threads to the array data processor for parallel execution
by the parallel processing arithmetic units.

13. The integrated circuit data processor device according
to claim 12, wherein the multi-level cache comprises a hier-
archy of caches, and wherein at least one adaptable cache
within the cache hierarchy is adaptable in size.

14. The integrated circuit data processor device according
to claim 13, wherein the adaptable cache has a plurality of
separately powered sections and wherein the size of the
adaptable cache is controlled by disconnecting at least one
separately powered section of the adaptable cache from its
power supply.

15. The integrated circuit data processor device according
to claim 13, wherein the adaptable cache has a plurality of
separately clocked sections and wherein the size adaptable
cache is controlled by disconnecting at least one separately
clocked section of the adaptable cache from its clock supply.

16. The integrated circuit data processor device according
to claim 13, wherein the adaptable cache has a plurality of
separately powered sections and the size the adaptable cache
is controlled by powering down at least one separately pow-
ered section of the adaptable cache.

17. The integrated circuit data processor device according
to claim 13, wherein the adaptable cache has a plurality of
separately powered sections and wherein the size the adapt-
able cache is controlled by changing the power supply of the
separately powered section of the adaptable cache.

18. The integrated circuit data processor device according
to claim 13, wherein at least one of said a hierarchy of caches
is segmented in sections.
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